Tables ## TABLE 46 Comparative Constraints Analysis Summary Table for Culvert Replacement Alternatives Muddy Creek Wetland Restoration February 2012 | Culvert Replacement
Alternative Configuration | Vegetative
Community
Impacts/
Benefits | Shellfish
Community
Impacts/
Benefits | Fisheries
Migration/ Habitat
Impacts/Benefits | Construction
Costs | Life Expectancy/
Maintenance Costs | Construction
Footprint Impacts
on
Wetlands | Construction Timeline and Traffic Bypass/ Detouring | Water Quality
Impacts/
Benefits | Permitting
Requirements | Wildlife/Rare
Species
Impacts/Benefits | Canoe/Kayak
Passage and
Safety | Aesthetics | TOTAL
SCORE | |---|--|---|--|---|--|--|---|--|--|---|---|--|----------------| | Pre-Cast Concrete Box Single Cell • 24' clear span box channel • Split for Transport • Installation by jacking | Score = 2 Greater impacts because of jacking pit. | Score = 2 Temporary
shellfishing
impacts where
jacking pit is
located. | Score = 1 Fish migration severely impacted during construction because of need to pump water to avoid deep trench excavation for bypass channel | Score = 3 Second highest
construction cost
(\$3,775,000) | Score = 3 75 Year Life Expectancy Intermittent maintenance will be required to repair the invert exposed to flow | Score = 1 Greatest impact during construction due to the jacking pit and need to support the reaction wall and construct access road Approximately 7,900 sq. ft. of wetland area disturbance | Score = 5 Shortest construction period (3-5 months) Maintains traffic through the site for the duration of construction | Score = 5 Culvert will improve water quality consistent with other scenarios. | Score = 2 Jacking will require greatest disturbance to wetlands. Finished product will have the least benefits to wildlife and humans with smaller opening and concrete floor. | Score = 2 Finished product will have the least benefits to wildlife with smaller opening and concrete floor. | • Score = 2 • Can be designed to offer safe passage but opening will appear smaller than other alternatives during high tide. | Score = 2 Square box
culvert will
lower aesthetics. Formliners can
be used to
improve
aesthetics | 30 | | Single Span Pre-Cast
Concrete Three Sided Bridge
•24' clear span box channel | Score = 3 Less impacts than jacking. | Score = 3 Less impacts than jacking. | Score = 3 Temporary bypass will allow continued fish passage through construction. Natural stream bottom through culvert. | • Score = 4 • Second lowest construction cost (\$3,540,000) | • Score = 5 • 75 Year Life Expectancy • Negligible annual maintenance cost | Score = 3 Moderate impact
during construction Approximately 5,320
sq. ft. of wetland area
impact | Score = 3 Construction time is shorter than concrete deck bridge alternatives (6-9 months) Shortest detour duration due to short construction time | Score = 5 Culvert will improve water quality consistent with other scenarios. | Score = 4 Approach reduces potential construction impacts while providing habitat and water quality benefits. | Score = 3 Finished product will have natural stream bottom and higher opening because of arch. | • Score = 3 • Higher opening because of arch. | Score = 4 Arch will make culvert appear less as a pipe. Formliners can be used to improve aesthetics | 43 | | Pre-Cast Concrete Deck Beam Bridge on Cast-in- Place Abutments • 24' clear span box channel | Score = 3 Less impacts than jacking. | Score = 3 Less impacts than jacking. | Score = 4 Temporary bypass will allow continued fish passage through construction. Natural stream bottom through culvert. Larger opening may encourage improved habitat and migration. | • Score = 1 • Highest construction cost (\$4,040,000) | Score = 4 75 Year Life Expectancy Minimal maintenance costs when compared to steel stringer bridges Pavement maintenance / replacement is a bridge item Potential damage to bridge rails | Score = 2 Second largest impact
during construction Approximately 6,290
sq. ft. of wetland area
impact | Score = 1 Longest construction time of alternatives (10- 12 months) Longest detour duration due to abutment construction | Score = 5 Opening will improve water quality consistent with other scenarios. | Score = 3 Approach has more significant construction impacts with comparable habitat and water quality benefits. | Score = 3 Finished product will have natural stream bottom and large opening through the embankment. | • Score = 4 • Larger opening because of bridge. | Score = 3 Size and height of structure may seem intrusive and overpowering in proposed setting | 36 | | Single Span Adjacent Pre-
Cast Concrete Deck Beam
Bridge Supported on Cast-in-
Place Concrete Abutments
•94' deck span over
armored trapezoidal
channel | Score = 3 Less impacts than jacking. | Score = 4 Least footprint within Land Under Ocean | Score = 5 Temporary bypass will allow continued fish passage through construction. Greater ability to form variability/complexity through natural stream bottom channel. Larger opening may encourage improved habitat and migration. | • Score = 5 • Lowest construction cost (\$3,310,000) | Score = 4 75 Year Life Expectancy Minimal maintenance costs when compared to steel stringer bridges Pavement maintenance / replacement is a bridge item Potential damage to bridge rails | Score = 4 Lowest impact during construction Approximately 4.,320 sq. ft. of wetland area impact | • Score = 2 • Longer construction time three sided bridge (8-10 months) | Score = 5 Opening will improve water quality consistent with other scenarios. | Score = 5 Approach has lowest construction impacts providing larger opening for wildlife and recreational passage. | Score = 5 Finished product will have natural stream bottom, the largest opening through the embankment and will allow for wildlife migration. | • Score = 5 • Highest opening resulting from large bridge span and trapezoidal channel configuration. • Lower tidal velocities compared to 24-ft. wide channel. | • Score = 4 • Larger opening creates less visual impact and greater sight lines from downstream beach area to upstream estuary. | 51 | ## **Attachment A** Topographic Wetland Resource Area Mapping XX/XX No. DATE DESCRIPTION DESIGNER REVIEWER SEAL SEAL ENGINEERING & SURVEYING FUSS&O'NEILL 317 IRON HORSE WAY, SUITE 204 SHEET LAYOUT AND NOTES PLAN CAPE COD CONSERVATION DISTRICT MUDDY CREEK WETLAND RESTORATION **MASSACHUSETTS** HARWICH/CHATHAM DATE: FEB. 2012 PROJ. No.: 20110202.A10 LP-101 DELINEATED WETLAND LIMIT AND FLAG FLOOD HAZARD ZONE BOUNDARY DATE XX/XX DESIGNER REVIEWER DESCRIPTION XX ENGINEERING & SURVEYING www.fando.com MUDDY CREEK WETLAND RESTORATION HARWICH/CHATHAM MASSACHUSETTS RC-101 GRAPHIC SCALE HARWICH/CHATHAM MASSACHUSETTS DATE XX/XX DESCRIPTION DESIGNER REVIEWER XX www.fando.com HARWICH/CHATHAM MASSACHUSETTS GRAPHIC SCALE DATE XX/XX DESIGNER REVIEWER DESCRIPTION XX ENGINEERING & SURVEYING 401.861.3070 GRAPHIC SCALE www.fando.com HARWICH/CHATHAM **MASSACHUSETTS** File Path: J:\D\WG\P2011\0202\A10\Civil\Plan\20110202A10_EXC01.dwg, Lay DATE XX/XX DESIGNER REVIEWER DESCRIPTION XX www.fando.com HARWICH/CHATHAM MASSACHUSETTS GRAPHIC SCALE DATE XX/XX DESIGNER REVIEWER DESCRIPTION