# Pleasant Bay Alliance Water Quality Monitoring Program: Statistical Analysis of 2000-2014 Water Quality Monitoring Data

July 2015

Prepared by: The Cadmus Group, Inc. Prepared for: Pleasant Bay Alliance

## **Table of Contents**

| Executive Summary                                   | 3  |
|-----------------------------------------------------|----|
| Introduction                                        |    |
| Methods                                             | 11 |
| Results & Discussion                                | 20 |
| Conclusions                                         |    |
| References                                          |    |
| Appendix A. Detailed Methods                        |    |
| Appendix B. Summary Statistics Tables               | 50 |
| Appendix C. Exceedances of Targets and Thresholds   | 69 |
| Appendix D. Station-Specific Trend Analysis Results | 73 |
| Appendix E. Bay-Wide Trend Analysis Results         | 75 |
| Appendix F. Station-Specific Trend Plots            | 77 |

## **Executive Summary**

#### **Introduction**

Pleasant Bay is an estuarine system located on Cape Cod in the Towns of Orleans, Chatham, Harwich, and Brewster, Massachusetts. The Pleasant Bay Alliance (Alliance) was formed in 1998 to oversee the implementation of a resource management plan for Pleasant Bay developed by the four towns. A key component of the resource management plan has been bay-wide water quality monitoring. Fifteen consecutive years of water quality data have been collected, at the time of this analysis, at sites throughout Pleasant Bay and its sub-embayments. In an effort to better understand these data to guide management planning, the Alliance retained The Cadmus Group, Inc. to update the statistical and trend analysis of monitoring data previously completed in 2010 (The Cadmus Group, 2010) to include results of 2010-2014 sampling.

#### **Methods**

Water quality monitoring data from 34 stations in Pleasant Bay over the period 2000 through 2014 were reviewed for analysis of bay-wide trends and station-specific trends. The duration of Pleasant Bay water quality monitoring to date (15 years) and sampling frequency (two times per month during July and August and once in early September) provides a dataset that is well-suited for analysis of long-term trends. Trend analysis was completed for the following parameters:

- Dissolved Inorganic Nitrogen (DIN)
- Bioactive Nitrogen (BioN)

- Total Nitrogen (TN)
- Total Phytopigments

- Phosphate (PO<sub>4</sub>)
- Dissolved Oxygen (DO)

• Salinity

Analysis of water quality trends in Pleasant Bay is subject to added complexity because of a major disturbance event that occurred on April 16, 2007, when a large storm created a "break" in the outer barrier beach (Nauset Beach). The formation of this second inlet connecting Pleasant Bay to the Atlantic Ocean has increased the volume of water exchanged with the Atlantic Ocean and thus has the potential to influence water quality in the Bay. Statistical techniques that account for the potential effect of the 2007 break on water quality trends were, therefore, applied for this study.

Most of the water quality parameters included in the trend analysis are related to eutrophication. Eutrophication refers to the enrichment of an ecosystem with nutrients (nitrogen and phosphorus) and the corresponding ecosystem response of nutrient enrichment. Trends in dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, and phosphate concentrations provide information on whether nutrient enrichment in Pleasant Bay has been stable, increased or decreased over time, while trends in total algal phytopigments and dissolved oxygen provide information on ecosystem responses to changes in nutrient levels. Trends in salinity concentrations were also analyzed. Although salinity is not directly related to eutrophication, salinity is an important physical water quality parameter and salinity trends provide information on changes in the relative amount of freshwater versus ocean water in Pleasant Bay.

Trend analysis results provide insight into whether water quality in Pleasant Bay has been stable, improved, or declined with respect to eutrophication<sup>1</sup>. Trends of decreased nutrient concentrations, decreased total phytopigment concentrations, and increased dissolved oxygen concentrations are indicative of improved conditions because they describe a system with lower nutrient enrichment, less algal growth, and higher oxygen levels for aquatic biota (Figure ES- 1). Conversely, trends of increased nutrient concentrations, and decreased dissolved oxygen concentrations are indicative of worsened conditions and continued eutrophication.



Figure ES- 1. Summary of trends in nutrients (dissolved organic nitrogen, bioactive nitrogen, etc.), total phytopigments, and dissolved oxygen concentrations associated with improved (top) and worsened (bottom) conditions in Pleasant Bay.

<sup>&</sup>lt;sup>1</sup> While eutrophication-related parameters are important indicators of Pleasant Bay water quality, additional parameters are used to assess overall water quality (pathogens, metals, toxics, etc.). These additional parameters were not analyzed as part of this study.

#### **Station-Specific Results**

Twenty Pleasant Bay water quality monitoring stations had sufficient data for station-specific trend analysis (fourteen stations had large data gaps that preclude meaningful analysis of trends). Stationspecific trend analysis involved fitting individual trendlines to sample data for each water quality parameter at each monitoring station and determining the statistical significance of trendlines. Statistical significance is based on the estimated likelihood that the trendline slope is due to random variation in sample data instead of a true change over time. A significance level of 5% was used for this study, which corresponds to a 5% likelihood of mischaracterizing a trendline as statistically significant even though no true trend exists. Results of "no statistically significant trend" do not necessarily mean that the water quality parameter did not change over the study period. Trends may not be detected as statistically significant because of insufficient sample data. Trend analysis results are summarized for each station-parameter pair in Table ES- 1.

Station-specific trend analysis results demonstrate that Pleasant Bay is a highly variable and complex system. Varied conditions throughout the Bay are reflected in differences in the direction and presence of trends among monitoring stations for each water quality parameter. None of the seven parameters analyzed have consistent trends across all twenty monitoring stations. Total nitrogen trends, for example, are increasing at four stations, decreasing at nine stations, and are not statistically different at seven stations over the period studied.

The complexity of water quality relationships in Pleasant Bay is reflected in the lack of consistent trends between parameters at a given station. None of the twenty stations included in trend analysis show improvements across all six eutrophication-related parameters and none show worsened conditions across all six parameters. Seven stations (Big Bay-SW, Paw Wah Pond, Namequoit-South, Meetinghouse Pond, Pochet Mouth, Namequoit River Mid, and River at Rattles Dock) have improving trends in bioactive nitrogen and/or total nitrogen, no significant trend or an improving trend in phosphate, and improving total phytopigment trends. Three of these seven also have trends of improved dissolved oxygen concentrations (Big Bay-SW, Namequoit-South, and River at Rattles Dock). Of the twenty stations included in trend analysis, these seven have results that are most in line with improvements in nutrient enrichment and ecosystem responses. However, the lack of dissolved inorganic nitrogen trends and consistent dissolved oxygen improvements preclude definitive statements on an overall decline in eutrophication at these stations. One station (Little Quanset Pond) has trends of increasing dissolved inorganic nitrogen, bioactive nitrogen, and total nitrogen concentrations and decreasing dissolved oxygen. While these trends are consistent with continued nutrient enrichment and declining ecosystem conditions, no significant trend was found for phosphate and total phytopigments at Little Quanset Pond.

Results for the remaining twelve stations (Outer Ryder's Cove, Inner Ryders Cove, Crow's Pond, Muddy Creek, Muddy Creek-Upper, Big Bay-NE, Round Cove, Quanset Pond, Namequoit-North, Arey's Pond, Kescayogansett Pond, and Pochet Upper) are more variable between parameters. Most show improved total phytopigment concentrations (i.e. decreased levels) but increasing concentrations of at least one nitrogen parameter. For example, Quanset Pond (PBA-10) has trends of increased dissolved inorganic nitrogen, bioactive nitrogen, and total nitrogen but decreased total phytopigment concentrations and

no significant trend in dissolved oxygen. Such inconsistencies illustrate the potential influence of factors, in addition to nutrient levels, on algal growth and dissolved oxygen concentrations (e.g., pH, light, water clarity, or tidal flushing).

Table ES- 1. Results of station-specific trend analysis. The direction of statistically significant trends is indicated by the arrow direction (▲, ▲, ▲ = increase; ▼, ▼, ▼ = decrease). Arrow colors describe whether the trend is associated with improved or worsened conditions (green = improved; red = worsened). Station-parameter pairs with no significant trend are symbolized with a black square (■). Salinity trends are not associated with improved or worsened conditions because they are not directly related to eutrophication.

| Station                        | DIN | BioN | ΤN | PO4 | Pigment | DO | Salinity |
|--------------------------------|-----|------|----|-----|---------|----|----------|
| Outer Ryder's Cove (CM-13)     |     | -    |    |     | V       |    | -        |
| Inner Ryders Cove (PBA-3)      |     | -    |    |     | V       |    |          |
| Crow's Pond (PBA-4)            |     |      |    |     | V       |    |          |
| Muddy Creek (PBA-5)            |     | -    |    |     | •       | -  |          |
| Muddy Creek-Upper (PBA-5A)     |     |      |    |     |         | -  |          |
| Big Bay-SW (PBA-6)             |     | -    | ▼  | ▼   | V       |    |          |
| Big Bay-NE (PBA-8)             |     |      |    |     | V       | -  |          |
| Round Cove (PBA-9)             |     |      |    |     | V       | •  | •        |
| Quanset Pond (PBA-10)          |     |      |    |     | V       | -  |          |
| Paw Wah Pond (PBA-11)          |     |      |    |     | V       | -  |          |
| Namequoit-South (PBA-12)       |     |      |    |     | V       |    |          |
| Namequoit-North (PBA-13)       |     | -    |    |     | V       |    | -        |
| Arey's Pond (PBA-14)           |     |      |    |     | V       | •  |          |
| Kescayogansett Pond (PBA-15)   |     |      |    |     | V       | -  |          |
| Meetinghouse Pond (PBA-16)     |     |      |    |     | V       | -  |          |
| Pochet Mouth (WMO-3)           |     |      | ▼  | -   | V       | -  | •        |
| Pochet Upper (WMO-5)           |     |      |    |     |         |    |          |
| Namequoit River Mid (WMO-6)    |     |      | ▼  |     | V       |    |          |
| River at Rattles Dock (WMO-10) |     |      |    |     | V       |    |          |
| Little Quanset Pond (WMO-12)   |     |      |    |     |         | ▼  |          |

DIN = Dissolved Inorganic Nitrogen, BioN = Bioactive Nitrogen; TN = Total Nitrogen PO4 = Phosphate; Pigment = Total Phytopigments; DO = Dissolved Oxygen

#### **Bay-Wide Results**

Bay-wide trend analysis involved pooling sample data from all 34 Pleasant Bay monitoring stations and fitting a trendline for each water quality parameter. All seven water quality parameters tested demonstrated statistically significant trends. Trends for six of the seven parameters (the exception was salinity) were best characterized with a trendline that changed following the 2007 Nauset Beach break. Bay-wide trend results are summarized below and in Table ES-2.

- Dissolved Inorganic Nitrogen: Concentrations of dissolved inorganic nitrogen show a significant increasing trend from 2000 to the 2007 Nauset Beach break. The increasing trend has continued after the break.
- Bioactive Nitrogen: Bioactive nitrogen concentrations show a significant decreasing trend from 2000 to the 2007 Nauset Beach break. Since the break, bioactive nitrogen concentrations are increasing (i.e., the pre-break trend has reversed).
- Total Nitrogen: Concentrations of total nitrogen show a significant decreasing trend from 2000 to the 2007 Nauset Beach break. Since the break, there is no significant trend in total nitrogen concentrations.
- *Phosphate*: Concentrations of phosphate show a significant increasing trend from 2000 to the 2007 Nauset Beach break. Since the break, there is no significant trend in phosphate concentrations.
- Total Phytopigments: Total phytopigment concentrations show no significant trend from 2000 • to the 2007 Nauset Beach break. Since the break, total phytopigment concentrations have been decreasing.
- Dissolved Oxygen: No significant trend in dissolved oxygen concentrations is apparent from 2000 to the 2007 Nauset Beach break. Since the break, dissolved oxygen concentrations have been increasing.
- Salinity: The salinity trend was best characterized as a "step-change" type trend, with a statistically significant increase in salinity concentrations after the 2007 break relative to prebreak concentrations.

Table ES- 2. Results of bay-wide trend analysis. The direction of statistically significant trends is indicated by the arrow direction ( $\blacktriangle$ ,  $\blacktriangle$ ,  $\bigstar$  = increase;  $\triangledown$ ,  $\triangledown$ ,  $\triangledown$  = decrease). Arrow colors are used to convey whether the trend is associated with improved or worsened conditions (green = improved; red = worsened). Station-parameter pairs with no significant trend are symbolized with a black square (=). The salinity trend was characterized as a step-change type trend, with a statistically significant increase in salinity concentrations after the 2007 break, and is not associated with improved or worsened conditions

| Parameter                    | Pre-Break<br>Trend | Post-Break<br>Trend |
|------------------------------|--------------------|---------------------|
| Dissolved Inorganic Nitrogen |                    | <b></b>             |
| Bioactive Nitrogen           | ▼                  | <b></b>             |
| Total Nitrogen               |                    |                     |
| Phosphate                    | <b></b>            | •                   |
| Total Phytopigments          |                    |                     |
| Dissolved Oxygen             |                    |                     |
| Salinity                     |                    |                     |

because it is not directly related to eutrophication.

Like the station-specific trend analysis results, bay-wide trend analysis results reflect the complexity of relationships between nutrient enrichment and ecosystem responses. Pre-break trends show a system with increased trends in two nutrient parameters (dissolved inorganic nitrogen and phosphate), decreased trends in two nutrient parameters (bioactive nitrogen and total nitrogen), and no significant trends in response parameters (total phytopigments and dissolved oxygen). Since the break, trends of increased dissolved inorganic nitrogen and bioactive nitrogen suggest continued nutrient enrichment but trends of decreased total phytopigments and increased dissolved oxygen indicate that any increase in nutrient enrichment has not translated to worsening ecosystem conditions. Analysis of other physical factors affecting algal growth and dissolved oxygen (pH, light, water clarity, tidal flushing, etc.) may provide insight into why response parameters have improved despite increased nutrient levels.

#### **Discussion and Conclusions**

Trend analysis results underscore the variability of conditions and complexity of water quality relationships throughout Pleasant Bay. Varied conditions throughout the Bay are reflected in differences in the direction and presence of trends among monitoring stations, while the lack of consistent trends between parameters reflects the complexity of relationships between nutrient inputs, nutrient cycling, and ecosystem responses to nutrient enrichment. Overall, trend analysis results do not show that eutrophication has improved or worsened at any one location or bay-wide. However, some stations have trends in individual parameters that suggest increased or decreased nutrient loading and these can be reviewed in conjunction with information on recent restoration efforts to gauge their effectiveness or to highlight areas as future restoration priorities. Furthermore, the presence of opposing trends in nutrient and response parameters (e.g., increasing nutrient concentrations but decreasing total phytopigment concentrations) merits further investigation of nutrient inputs, nutrient cycling, and ecosystem responses to changing nutrient levels in Pleasant Bay.

When interpreting trend analysis results, note that trends do not explicitly depict water quality as "good" or "bad". Such classifications are typically made by evaluating whether sample data are above or below a numeric target. Trend analysis instead describes the relationship between water quality and time during the period of analysis, specifically whether concentrations have increased or decreased. Targets for water quality parameters analyzed in this study include dissolved oxygen concentrations above 6 milligrams per liter, total phytopigment concentrations below 5 micrograms per liter, and bioactive nitrogen concentrations between 0.098 and 0.405 milligrams per liter (bioactive nitrogen targets vary by station). Although trend analysis results show improved conditions for some parameters in portions of Pleasant Bay, sample data show that numeric targets were consistently not achieved in recent years. For example, the Namequoit-South station (PBA-12) has improving trends in five of the six eutrophication-related parameters analyzed (the exception is dissolved oxygen target. Such results illustrate continued effort is needed to restore the Pleasant Bay ecosystem and why trend analysis results should be one of several pieces of information used to guide restoration planning.

The trend analysis results presented in this report are <u>not</u> intended to be used to draw conclusions on the role of the 2007 break as a driver of water quality change in Pleasant Bay. Trend analysis showed a

significant post-break change for some station-parameter pairs and for all parameters in the bay-wide analysis. In some cases, the post-break change is consistent with the expected effect of the break (e.g., the increase in bay-wide salinity concentrations following the break, possibly due to increased exchange of open ocean water). However, increased or decreased concentrations in samples collected after the 2007 break alone do not supply definitive evidence that the break caused a change in a water quality parameter. Analysis of other potential drivers of change (e.g., trends in nutrient loads from Pleasant Bay tributaries) are needed in order to determine the influence of the 2007 break and such analyses were beyond the scope of this study. Finally, trend analysis results are also <u>not</u> intended to be used for prediction of future conditions. Pleasant Bay is a dynamic system, and conditions in future years may drastically differ from the conditions that contributed to observed trends from 2000-2014. Continued monitoring is needed to characterize water quality in the coming years and additional sample data may allow for the identification of trends not detected in the 2000-2014 dataset.

### Introduction

Pleasant Bay is an estuarine system located on Cape Cod in the Towns of Orleans, Chatham, Harwich, and Brewster, Massachusetts. Pleasant Bay was designated as an Area of Critical Environmental Concern (ACEC) by the Massachusetts Executive Office of Environmental Affairs in 1987. The Pleasant Bay Alliance (Alliance) was formed in 1998 to oversee the implementation of a resource management plan developed by the four towns. A key component of the resource management plan has been a bay-wide water quality monitoring plan.

In 2007, the Massachusetts Department of Environmental Protection established nitrogen Total Maximum Daily Loads (TMDLs) for Pleasant Bay. The TMDLs define the maximum nitrogen loads that Pleasant Bay can receive while still meeting threshold concentrations for bioactive nitrogen defined in the 2006 Massachusetts Estuaries Project (MEP) technical report for Pleasant Bay. Both the MEP technical report and nitrogen TMDLs incorporated water quality data collected by the Pleasant Bay Alliance under the bay-wide monitoring plan.

Fifteen consecutive years of water quality data have now been collected, at the time of this analysis, at sites throughout Pleasant Bay and its sub-embayments. In an effort to better understand these data, the Alliance retained The Cadmus Group, Inc. in February of 2015 to update the statistical analysis of monitoring data previously completed in 2010 (The Cadmus Group, 2010) to include results of 2010-2014 sampling. In addition to overall water quality trends, the Alliance is particularly interested in the effects of the April 16, 2007 "break" in the barrier beach (Nauset Beach), on water quality. This storm caused the formation of a second inlet connecting Pleasant Bay to the Atlantic Ocean. As a result of the break, tidal range in Pleasant Bay has increased by 0.7 feet and the volume of water exchanged with the Atlantic Ocean has increased by 14.9 percent (Applied Coastal Research and Engineering, Inc., 2008). The increase in the volume of water exchange between the bay and the open ocean would be expected to influence water quality in Pleasant Bay.

The statistical analysis of 2000-2014 water quality data described in this report includes a bay-wide trend analysis, as well as station-specific trend analyses. A class of statistical methods, called mixed effects models, was used to evaluate bay-wide trends. Multiple linear regression was used to evaluate station-specific trends. Both methods allow for the inclusion of multiple explanatory variables to isolate trends over time from other factors affecting water quality, with mixed effects models applied to further isolate bay-wide trends when samples from multiple monitoring stations are analyzed together.

This report is intended for a broad audience. As such, the main body of the report provides a general description of study methods and results. The appendices provide information for readers interested in detailed descriptions of the methods applied and results. Appendix A describes the data preparation steps and statistical methods applied. Appendix B contains tables of summary statistics for each sampling site. Appendix C contains tables that summarize the number of samples exceeding target concentrations for bioactive nitrogen, total phytopigments, and dissolved oxygen at each station by year. Appendix D and Appendix E contain tables of station-specific and bay-wide trend analysis results. Appendix F contains plots of station-specific trendlines for each parameter analyzed.

### **Methods**

#### **Dataset Description**

The objective of this study is to evaluate trends over time in water quality parameters that are associated with nutrient loading and eutrophication in Pleasant Bay. These parameters include concentrations of dissolved inorganic nitrogen (DIN), bioactive nitrogen (DIN plus particulate organic nitrogen), total nitrogen, total algal pigments (phytopigments), phosphate, and dissolved oxygen. Trends in salinity concentrations were also analyzed. Although salinity is not directly related to eutrophication, salinity is an important physical water quality parameter and salinity trends provide information on changes in the relative amount of freshwater versus ocean water in Pleasant Bay.

Water quality samples used in this study were collected by members of the Alliance and Chatham Water Watchers volunteer monitoring programs using methods described in the *Quality Assurance Project Plan for the Pleasant Bay Citizen Water Quality Monitoring Program* (Pleasant Bay Resource Management Alliance, 2001). Laboratory analyses were conducted at the School for Marine Science and Technology (SMAST) Laboratory at the University of Massachusetts-Dartmouth campus. Approximately 3,500 samples collected at 34 stations over the period 2000 through 2014 are used in the analysis. Table 1 lists total nitrogen sample counts by station and year as an example of the distribution of sample data. A similar number of samples by station and year are available for each of the other water quality parameters included in trend analysis. The duration of Pleasant Bay water quality monitoring to date (15 years) and sampling frequency (two times per month during July and August and once in early September) provides a dataset that is well suited for analysis of long-term trends.

Sample data acquired from the Alliance were reviewed prior to trend analysis to identify suspect data points and to characterize the prevalence of outliers. Some suspect data points were confirmed as entry errors based on original sample records maintained by the Alliance and were corrected prior to analysis. Outliers are samples with atypical low or high values and a large number of outliers can skew trend analysis results. The number of outliers for each water quality parameter included in trend analysis amounted to 1% or less of the total sample count.

The Pleasant Bay monitoring dataset intentionally includes "duplicate" samples. Duplicate samples are two samples collected at the same time and location for quality control purposes. Duplicate samples were averaged for trend analysis except where one result differed by more than 150% of the average of the duplicate pair (an indication of collection, handling, or measurement error), in which case both samples were discarded for analysis. Very few duplicate pairs had a large difference and nearly all were included in the analysis.

The Pleasant Bay monitoring dataset also includes paired "surface-bottom" samples. Surface-bottom samples are two samples collected at the same time and location from different depths. Most water quality parameters show a significant difference between surface and bottom concentrations. For this reason, sample depth was included as a potential predictor of parameter concentrations as part of trend analysis.

A complete description of dataset review methods is provided in Appendix A.

| Site ID | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | Total |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| CM-13   | 20   | 16   | 14   | 14   | 14   | 14   | 12   | 10   | 10   | 10   | 10   | 10   | 8    | 10   | 10   | 182   |
| CM-14   | 12   | 7    | 7    | 7    | 7    | 7    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 47    |
| PBA-1   | 20   | 16   | 14   | 14   | 14   | 14   | 10   | 0    | 0    | 0    | 0    | 0    | 0    | 5    | 8    | 115   |
| PBA-2   | 18   | 8    | 7    | 6    | 6    | 7    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 52    |
| PBA-3   | 20   | 16   | 14   | 14   | 14   | 14   | 8    | 10   | 10   | 8    | 10   | 10   | 8    | 10   | 10   | 176   |
| PBA-4   | 20   | 16   | 14   | 14   | 14   | 14   | 10   | 10   | 10   | 10   | 8    | 10   | 10   | 10   | 10   | 180   |
| PBA-5   | 12   | 8    | 6    | 6    | 8    | 7    | 5    | 4    | 5    | 4    | 5    | 5    | 5    | 5    | 5    | 90    |
| PBA-5A  | 0    | 0    | 6    | 7    | 7    | 7    | 6    | 5    | 5    | 5    | 5    | 5    | 5    | 4    | 5    | 72    |
| PBA-6   | 10   | 10   | 10   | 12   | 14   | 14   | 0    | 0    | 0    | 0    | 6    | 10   | 8    | 10   | 10   | 114   |
| PBA-7   | 12   | 12   | 14   | 14   | 14   | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 80    |
| PBA-8   | 10   | 12   | 14   | 14   | 15   | 14   | 12   | 10   | 10   | 10   | 10   | 10   | 8    | 8    | 8    | 165   |
| PBA-9   | 12   | 12   | 12   | 14   | 14   | 14   | 12   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 170   |
| PBA-10  | 12   | 12   | 14   | 14   | 14   | 14   | 12   | 8    | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 170   |
| PBA-11  | 12   | 12   | 14   | 12   | 12   | 14   | 12   | 7    | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 165   |
| PBA-12  | 12   | 12   | 14   | 14   | 14   | 14   | 8    | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 168   |
| PBA-13  | 12   | 12   | 14   | 12   | 12   | 14   | 12   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 8    | 166   |
| PBA-14  | 12   | 12   | 14   | 14   | 14   | 14   | 11   | 0    | 0    | 0    | 10   | 10   | 10   | 10   | 10   | 141   |
| PBA-15  | 12   | 12   | 12   | 14   | 14   | 14   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 168   |
| PBA-16  | 12   | 12   | 14   | 14   | 14   | 14   | 7    | 0    | 0    | 0    | 10   | 10   | 10   | 10   | 10   | 137   |
| PBA-17A | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 6    | 5    | 6    | 4    | 8    | 29    |
| PBA-18  | 0    | 0    | 10   | 12   | 10   | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 46    |
| PBA-19  | 0    | 0    | 10   | 12   | 12   | 12   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 6    | 5    | 57    |
| PBA-20  | 0    | 0    | 10   | 12   | 12   | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4    | 10   | 62    |
| PBA-21  | 0    | 0    | 10   | 12   | 14   | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 6    | 10   | 66    |
| WMO-2   | 0    | 15   | 13   | 18   | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 60    |
| WMO-3   | 0    | 17   | 12   | 14   | 10   | 0    | 6    | 5    | 5    | 4    | 5    | 5    | 5    | 5    | 4    | 97    |
| WMO-4   | 0    | 10   | 11   | 16   | 6    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 43    |
| WMO-5   | 0    | 10   | 8    | 16   | 6    | 6    | 6    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 92    |
| WMO-6   | 0    | 18   | 18   | 18   | 16   | 0    | 6    | 4    | 10   | 5    | 5    | 5    | 5    | 5    | 5    | 120   |
| WMO-7   | 0    | 18   | 18   | 18   | 18   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 72    |
| WMO-8   | 0    | 14   | 6    | 6    | 18   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3    | 4    | 51    |
| WMO-9   | 0    | 14   | 6    | 6    | 18   | 6    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 51    |
| WMO-10  | 0    | 6    | 12   | 6    | 8    | 0    | 12   | 8    | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 122   |
| WMO-12  | 0    | 14   | 8    | 8    | 8    | 0    | 0    | 0    | 0    | 0    | 5    | 4    | 5    | 5    | 5    | 62    |
| Total   | 250  | 353  | 380  | 404  | 405  | 304  | 177  | 126  | 140  | 131  | 170  | 174  | 168  | 195  | 211  | 3,588 |

Table 1 Number of total nitrogen samples collected at each monitoring site by year.

#### **Overview of Trend Analysis Techniques**

Coastal and embayment water quality is influenced by many factors, including rainfall, temperature, ocean currents, human activity within the waterbody and its inland drainage area, chemical and biological processes, and other factors. Since these drivers are dynamic and constantly changing, so too is water quality. When a water quality sample is collected, it represents a snapshot of water quality at a specific location and moment in time. It is not unusual to collect a sample immediately adjacent to, or immediately following, another sample and measure different results. Trend analysis attempts to differentiate between random variation in sample data versus a consistent change in water quality over time.

Trend analysis can be used to identify two types of trends. A monotonic trend is a sustained, gradual change over time, as represented by a linear trendline (Figure 1; top). A step change trend is an abrupt shift in conditions at a specific point in time and usually corresponds to the occurrence of a discrete event (Figure 1; bottom).



Figure 1. Example of a monotonic trend (top) and step change trend (bottom).

The variability of water quality in coastal systems can present a challenge for evaluating trends. Statistical methods must be applied to explicitly account for variable conditions. For example, simple linear regression can be used to fit a trendline to a set of total nitrogen concentrations observed over time (e.g., Figure 1; top) using the equation:

#### Total Nitrogen = aDate + z (Equation 1)

where coefficient *a* is the trendline slope and coefficient *z* is the trendline intercept. Concluding that there is a positive or negative trend in total nitrogen based on the slope of the fitted line alone is not appropriate since that slope can result from random chance rather than from a true trend. A statistical test is therefore applied to determine whether the slope of the fitted trend line is significantly different from zero (i.e., no trend). Judgment of whether a trend is statistically significant is based on a calculated probability that the trend line slope is the result of random chance (instead of a true relationship between water quality and time) and whether this probability is sufficiently low.

The preceding example of trend analysis focuses on the use of simple linear regression to describe the relationship between water quality and time. Multiple linear regression, an extension of simple linear regression, can be a much more powerful tool for trend analysis. While simple linear regression examines the relationship between one response variable and one predictor variable, multiple linear regression includes multiple predictor variables in the analysis. This can be advantageous in complex systems where multiple drivers are influencing the response.

An example of the use of multiple linear regression is analysis of trends in dissolved oxygen concentrations over time. Dissolved oxygen concentrations are known to be influenced by water temperature and salinity. Trend analysis of dissolved oxygen concentrations therefore becomes more powerful when temperature and salinity are included as predictor variables in a multiple linear regression along with time:

#### Dissolved Oxygen = aDate + bTemperature + cSalinty + z (Equation 2)

This approach has the potential to better characterize how dissolved oxygen changes over time since variation due to temperature and salinity is explicitly accounted for.

Note that although the use of multiple predictor variables in a regression can be beneficial, it is not good practice to add as many predictors as possible. A simpler regression with fewer predictor variables is always preferable to a complex regression with many predictor variables given equal performance. This is because a complex regression is more likely to be describing random noise in the data rather than true relationships between the predictors and the response variable. Therefore, a predictor variable should only be included in a regression when its explanatory power outweighs the corresponding increase in complexity.

Equations 1 and 2 both involve the detection of a gradual (monotonic) trend. A step change trend can be evaluated using an "event" categorical variable that describes whether a sample was collected before or after the event of interest. For the case of a total nitrogen, a linear regression equation for evaluating a step change following an event is:

$$Total Nitrogen = aEvent + z$$
 (Equation 3)

In equation 3, coefficient *a* is the difference in means between total nitrogen concentrations before the event and after the event.

Monotonic trends can also be influenced by a discrete event and analysis of pre-event and post-event trends can be evaluated in tandem using multiple linear regression. Doing so requires the use of a continuous "Date" term, a categorical "Event" term, and a "Date-Event" interaction term in the regression equation:

$$Total Nitrogen = aDate + bEvent + cDate: Event + z$$
 (Equation 4)

In equation 4, coefficient a represents the monotonic trend before the event and coefficient c represents the effect of the event on the monotonic trend.

A third type of regression commonly used for trend analysis is mixed effects regression (also termed "mixed effects modeling"<sup>2</sup>). A mixed effects model is an extension of multiple linear regression that is applied to a sample dataset made up of several distinct groups of observations, such as a dataset with multiple observations from different monitoring stations. Like multiple linear regression, a mixed effects model describes the relationship between a response variable and multiple predictor variables. The model is considered mixed because it considers both "fixed effects" (predictors with a systematic and predictable influence on the response, such as time) and "random effects" (predictors with a non-systematic or idiosyncratic influence on the response, such as monitoring location).

<sup>&</sup>lt;sup>2</sup> The use of the term "model" throughout this report refers to a statistical model. A statistical model is a mathematical expression derived from observational data that describes the relationship between two or more variables. A statistical model is distinct from a process-based water quality model, which uses a series of equations to represent the various physical, chemical, and biological processes occurring within a waterbody.

#### **Detecting Trends in Water Quality Parameters**

Trends in water quality parameters in Pleasant Bay over the period 2000-2014 were analyzed using multiple linear regression and mixed effects models. Multiple linear regression was used to evaluate station-specific trends in water quality parameters, while mixed effects modeling was used to evaluate bay-wide trends in water quality parameters. Seven water quality parameters were analyzed for station-specific and bay-wide trends:

- Dissolved Inorganic Nitrogen (DIN)
- Bioactive Nitrogen
- Total Nitrogen (TN)
- Total Phytopigments
- Phosphate (PO<sub>4</sub>)
- Dissolved Oxygen (DO)
- Salinity

#### Station-Specific Trend Analysis

Trends in water quality parameters were evaluated individually at 20 monitoring stations in Pleasant Bay. Although there are 34 monitoring stations in the 2000-2014 dataset, 14 stations are either not actively sampled or contain large data gaps that preclude meaningful analysis of trends. Table 2 lists the stations excluded from stations-specific trend analysis and the reasons for exclusion.

#### Table 2. Pleasant Bay monitoring stations excluded from station-specific trend analysis.

| Station | Reason for Exclusion From Station-Specific Trend Analysis |
|---------|-----------------------------------------------------------|
| CM-14   | Not sampled since 2005                                    |
| PBA-1   | Not sampled from 2007-2012                                |
| PBA-2   | Not sampled since 2005                                    |
| PBA-7   | Not sampled since 2005                                    |
| PBA-17A | Not sampled before 2010                                   |
| PBA-18  | Not sampled since 2005                                    |
| PBA-19  | Not sampled from 2006-2012                                |
| PBA-20  | No sampled from 2006-2012                                 |
| PBA-21  | Not sampled from 2006-2012                                |
| WMO-2   | Not sampled since 2004                                    |
| WMO-4   | Not sampled since 2004                                    |
| WMO-7   | Not sampled since 2004                                    |
| WMO-8   | Not sampled from 2005-2012                                |
| WMO-9   | Not sampled from 2006-2013                                |

Analysis of station-specific trends involved fitting various regression equations to sample data for each station-parameter pair, evaluating which regression equation provided the best fit, and assessing the statistical significance of terms of the best regression equation.

Nine candidate regression equations were fit to each station-parameter pair. The candidate regression equations described one of three trend types:

- 1. Gradual (monotonic) change over the period 2000-2014 that is not affected by the 2007 Nauset Beach break (Figure 2; top-left);
- 2. Step change following the 2007 Nauset Beach break (Figure 2; top-right);
- 3. Gradual (monotonic) change from 2000 to 2014 that changes in magnitude or direction following the 2007 break (Figure 2; bottom).





Figure 2. Graphical examples of the three trend types evaluated as part of station-specific and bay-wide trend analysis. Trend type 1 (top-left) is a gradual trend over 2000-2014 that is not affected by the 2007 Nauset Beach break. Trend type 2 (top-right) is a step change after the 2007 break. Trend type 3 (bottom) is a gradual change from 2000-2014 that changes in magnitude or direction after the break.

## Table 3. Summary of the three trend types evaluated as part of station-specific and bay-wide trendanalysis.

| Name         | Description                                                              | <b>Regression Equation Form</b>       |
|--------------|--------------------------------------------------------------------------|---------------------------------------|
| Trend Type 1 | Monotonic trend from 2000-2014 that is not affected by the 2007 break.   | y = aDate + z                         |
| Trend Type 2 | Step change after the 2007 break.                                        | y = aBreak + z                        |
| Trend Type 3 | Monotonic trend from 2000-2014 with a slope change after the 2007 break. | y = aDate + bBreak + cDate: Break + z |

The candidate regression equations for each station-parameter pair further differ in whether they include sample depth, water temperature, recent rainfall, and salinity at the time of sample collection as additional predictor variables.

The "best" regression equation for each parameter out of the nine candidates was identified using Akaike's Information Criterion (AIC) (Hirotugu, 1974), a measure of relative quality within a collection of regression models. This approach identifies the model that provides the most explanatory power while minimizing the number of predictor variables. The simplest possible model is preferred unless an additional predictor variable provides significantly more explanatory power. Identification of the best model also considered the number of sample data points available for analysis. The rule of thumb in multiple linear regression is that one predictor variable per 20 samples should be included in the model. After selecting the best regression equation for each of the site-parameter pair, the statistical significance of the trend over time was evaluated using the p-value for coefficients related to changes over time and a significance level of 0.05. A significance level of 0.05 corresponds to a 5% likelihood of a "false positive" result (i.e., a trend is characterized as statistically significant even though no trend over time actually exists). The interpretation of statistical significance varies for each of the three trend types described in Table 3:

- Trend type 1 (monotonic trend with no effect of the 2007 break). The p-value for the "Date" term describes whether the trendline slope is statically significant.
- Trend type 2 (step change trend after the 2007 break). The p-value for the "Break" term describes whether the upward/downward shift after the 2007 break is statistically significant.
- Trend type 3 (monotonic trend with slope change after the 2007 break).
  - The p-value for the "Date" term describes whether the pre-break trendline slope is statically significant.
  - The p-value for the "Date:Break" interaction term describes whether the post-break trendline slope is statistically significant.

#### Bay-Wide Trend Analysis

Bay-wide water quality trends were evaluated using sample data from the 34 monitoring stations listed in Table 1. Similar to analysis of station-specific trends, analysis of bay-wide trends involved fitting various regression equations to sample data for each parameter, evaluating which regression equation provided the best fit, and assessing the statistical significance of terms of the best regression equation. The bay-wide analysis used mixed effects regression models with station ID as a random effect on trend slope and intercept. Mixed effects models are robust to missing data (Baayen et al. 2008) and the 14 stations with incomplete monitoring records listed in Table 2 were included in bay-wide trend analysis in order to maximize the number of samples analyzed.

Six candidate regressions were fit for each parameter. Like the station-specific analysis, candidate baywide regressions described trends over time as either monotonic with no effect of the 2007 break (Figure 2; top-left), a step change trend following the 2007 break (Figure 2; top-right), or a monotonic trend with a slope change following the 2007 Nauset Beach break (Figure 2; bottom). For each of these three trend types, one regression equation was fit with salinity, temperature, and recent rainfall at the time of sample collection as additional predictors and one regression equation was fit without salinity, temperature, and recent rainfall. All six candidate regressions included sampling depth as an additional predictor.

As with station-specific trend analysis, the "best" bay-wide regression equation for each water quality parameter was selected from the six candidates using AIC values. After selecting the best model for each water quality parameter, the statistical significance of the trend over time was evaluated using the p-value for coefficients related to changes over time ("Date", "Break", and/or "Date:Break" interaction) and a significance level of 0.05.

Further details of trend analysis methods can be found in Appendix A.

### **Results & Discussion**

#### Station-Specific Trends

Station-specific trends are summarized for each station-parameter pair in Table 4 and are mapped in Figure 3 through Figure 8. In Table 4 and Figure 3 through Figure 8, the statistical significance and direction of trends are conveyed with the following symbols:

- Upward arrows (▲,▲,▲) indicate that the concentration of the water quality parameter increased over time and that the increase is statistically significant;
- Downward arrows (▼,▼,▼) indicate that the concentration of the water quality parameter decreased over time and that the decrease is statistically significant;
- Squares (**•**) indicate that the change in water quality over time is not statistically significant.

Table 4 and Figure 3 through Figure 8 also express whether the trend is associated with improved or worsened conditions based on the color of the symbol:

- Green arrows (▲ or ▼) indicate that the trend is associated with improved conditions. For dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, phosphate, and total pigments, decreased concentrations are associated with improved conditions. For dissolved oxygen, increased concentrations over time are associated with improved conditions;
- Red arrows (▲ or ▼) indicate that the trend is associated with worsened conditions. For dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, phosphate, and total pigments, increased concentrations over time are associated with worsened conditions. For dissolved oxygen, decreased concentrations over time are associated with worsened conditions;
- Salinity trends are not associated with improved or worsened conditions because they are not directly related to eutrophication.

## Table 4. Station-specific trend analysis results. DIN=Dissolved Inorganic Nitrogen, TN=Total Nitrogen, BioN=Bioactive Nitrogen, PO4=Phosphate, Pigment=Total Phytopigments, DO=Dissolved Oxygen,

| Station                        | DIN | BioN | ΤN | PO4 | Pigment | DO | Salinity |
|--------------------------------|-----|------|----|-----|---------|----|----------|
| Outer Ryder's Cove (CM-13)     |     | -    |    |     | ▼       |    |          |
| Inner Ryders Cove (PBA-3)      |     | -    | •  |     | ▼       |    |          |
| Crow's Pond (PBA-4)            |     |      |    |     | V       |    |          |
| Muddy Creek (PBA-5)            |     | -    |    |     |         |    |          |
| Muddy Creek-Upper (PBA-5A)     |     |      |    |     |         |    |          |
| Big Bay-SW (PBA-6)             |     | -    | ▼  | ▼   | ▼       |    |          |
| Big Bay-NE (PBA-8)             |     |      |    |     | ▼       |    |          |
| Round Cove (PBA-9)             |     | ▼    | ▼  |     | ▼       | ▼  |          |
| Quanset Pond (PBA-10)          |     |      |    |     | V       |    |          |
| Paw Wah Pond (PBA-11)          |     | ▼    | ▼  |     | ▼       |    |          |
| Namequoit-South (PBA-12)       |     |      |    |     | V       |    |          |
| Namequoit-North (PBA-13)       |     |      |    |     | ▼       |    |          |
| Arey's Pond (PBA-14)           |     |      |    |     | ▼       | ▼  |          |
| Kescayogansett Pond (PBA-15)   |     | ▼    | ▼  |     | ▼       |    |          |
| Meetinghouse Pond (PBA-16)     |     |      |    |     | ▼       |    |          |
| Pochet Mouth (WMO-3)           |     |      | ▼  |     | ▼       |    |          |
| Pochet Upper (WMO-5)           |     |      |    |     | ▼       |    |          |
| Namequoit River Mid (WMO-6)    |     |      |    |     | ▼       |    |          |
| River at Rattles Dock (WMO-10) |     |      |    |     | V       |    |          |
| Little Quanset Pond (WMO-12)   |     |      |    | -   |         | ▼  |          |



Figure 3. Direction of trends in bioactive nitrogen (BioN) concentrations at each water quality monitoring station in Pleasant Bay.



Figure 4. Direction of trends in dissolved inorganic nitrogen (DIN) concentrations at each water quality monitoring station in Pleasant Bay.



Figure 5. Direction of trends in total nitrogen concentrations at each water quality monitoring station in Pleasant Bay.



Figure 6. Direction of trends in phosphate concentrations at each water quality monitoring station in Pleasant Bay.



Figure 7. Direction of trends in total phytopigment concentrations at each water quality monitoring station in Pleasant Bay.



Figure 8. Direction of trends in dissolved oxygen (DO) concentrations at each water quality monitoring station in Pleasant Bay.



Figure 9. Direction of trends in salinity concentrations at each water quality monitoring station in Pleasant Bay.

Most station-specific trends are best characterized as either a gradual change over time that was not affected by the 2007 Nauset Beach break or a step-change following the 2007 break (trend types 1 and 2 in Table 3). Of the 140 different station-parameter pairs (20 stations and 7 water quality parameters), 67 pairs used trend type 1 (monotonic trend that was not affected by the 2007 break) and 55 pairs used trend type 2 (step change after the 2007 break). Note that step change trends should not be interpreted as being caused by the 2007 Nauset Beach break since other factors not related to the break could also have driven differences between pre-break and post-break concentrations. The remaining 18 pairs used trend type 3 (monotonic trend with a slope change after the 2007 break) and all 18 of these describe trends in dissolved oxygen or salinity. For these pairs, Table 4 and Figure 3 through Figure 8 list the direction and statistical significance of the post-break trend only. Refer to Appendix D for further details of each station-specific regression and Appendix F for station-specific trendline plots.

Station-specific trend analysis results demonstrate that Pleasant Bay is a highly variable and complex system. Varied conditions throughout the Bay are reflected in differences in the direction and presence of trends among monitoring stations for each water quality parameter. None of the seven parameters analyzed have consistent trends across all twenty monitoring stations. Total nitrogen trends, for example, are increasing at four stations, decreasing at nine stations, and are not statistically significant at seven stations.

The complexity of water quality relationships in Pleasant Bay is reflected in the lack of consistent trends between parameters at a given station. None of the twenty stations included in trend analysis show improvements across all six eutrophication-related parameters and none show worsened conditions across all six parameters. Seven stations (Big Bay-SW, Paw Wah Pond, Namequoit-South, Meetinghouse Pond, Pochet Mouth, Namequoit River Mid, and River at Rattles Dock) have improving trends in bioactive nitrogen and/or total nitrogen, no significant trend or an improving trend in phosphate, and improving total phytopigment trends. Three of these seven also have trends of improved dissolved oxygen concentrations (Big Bay-SW, Namequoit-South, and River at Rattles Dock). Of the twenty stations included in trend analysis, these seven have results that are most in line with overall improvements in nutrient enrichment and ecosystem responses. However, the lack of dissolved inorganic nitrogen trends and consistent dissolved oxygen improvements preclude definitive statements on an overall decline in eutrophication at these stations. One station (Little Quanset Pond) has trends of increasing dissolved inorganic nitrogen, bioactive nitrogen, and total nitrogen concentrations and decreasing dissolved oxygen. While these trends are consistent with continued nutrient enrichment and declining ecosystem conditions, no significant trend was found for phosphate and total phytopigments at Little Quanset Pond.

Results for the remaining twelve stations (Outer Ryder's Cove, Inner Ryders Cove, Crow's Pond, Muddy Creek, Muddy Creek-Upper, Big Bay-NE, Round Cove, Quanset Pond, Namequoit-North, Arey's Pond, Kescayogansett Pond, and Pochet Upper) are more variable between parameters. Most show improved total phytopigment concentrations but increasing concentrations of at least one nitrogen parameter. For example, Quanset Pond (PBA-10) has trends of increased dissolved inorganic nitrogen, bioactive nitrogen, and total nitrogen but decreased total phytopigment concentrations and no significant trend in dissolved oxygen. Such inconsistencies illustrate the potential influence of factors in addition to

nutrient inputs on algal growth and dissolved oxygen concentrations (e.g., pH, light, water clarity, or tidal flushing).

The following summary paragraphs describe trend analysis results for each monitoring station. When reviewing results for an individual station, note that trends of decreased nutrient concentrations, decreased total phytopigment concentrations, and increased dissolved oxygen concentrations are indicative of improved conditions because they describe a system with lower nutrient enrichment, less algal growth, and higher oxygen levels for aquatic biota. Conversely, trends of increased nutrient concentrations, increased total phytopigment concentrations, and decreased dissolved oxygen concentrations are indicative of worsened conditions and continued eutrophication. Also note that trends do not explicitly depict water quality as "good" or "bad". Such classifications are typically made by evaluating whether sample data are above or below a numeric target. Targets for water quality parameters analyzed in this study include dissolved oxygen concentrations above 6 milligrams per liter, total phytopigment concentrations below 5 micrograms per liter, and bioactive nitrogen concentrations between 0.098 and 0.405 milligrams per liter (bioactive nitrogen targets vary by station). Appendix C contains tables summarizing the number of samples not meeting targets for bioactive nitrogen, dissolved oxygen, and total phytopigments at each station by year.

#### CM-13 (Outer Ryder's Cove)

- *Nutrients*: Concentrations of dissolved inorganic nitrogen, total nitrogen, and phosphate have increased since 2000. No statistically significant trend was found for bioactive nitrogen.
- *Total Phytopigments*: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen*: Dissolved oxygen concentrations show no significant trend prior to the 2007 break and an increasing trend after the break.
- Salinity: No significant trend was found for salinity concentrations.

#### PBA-3 (Inner Ryders Cove)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen have increased since 2000. No statistically significant trend was found for the remaining nutrient parameters (bioactive nitrogen, total nitrogen, and phosphate).
- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations show no significant trend prior to the 2007 break and an increasing trend after the break.
- Salinity: Salinity concentrations show an increasing trend since 2000.

#### PBA-4 (Crow's Pond)

- *Nutrients:* Concentrations of bioactive nitrogen and total nitrogen have decreased since 2000 while phosphate concentrations have increased. No significant trend was found for dissolved inorganic nitrogen.
- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations show no significant trend before the 2007 break and an increasing trend after the break.
- *Salinity:* Salinity concentrations show an increasing trend since 2000.

#### PBA-5 (Muddy Creek)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen have increased since 2000. No significant trend was found for the remaining nutrient parameters (bioactive nitrogen, total nitrogen, and phosphate).
- Total Phytopigments: No significant trend was found for total phytopigments.
- *Dissolved Oxygen:* Dissolved oxygen concentrations show a decreasing trend before the 2007 break and no significant trend after the break.
- *Salinity:* Salinity concentrations show a decreasing trend before the 2007 break and an increasing trend after the break.

#### PBA-5A (Muddy Creek-Upper)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen have decreased since 2000. No significant trend was found for the remaining nutrient parameters (bioactive nitrogen, total nitrogen, and phosphate).
- *Total Phytopigments:* Total phytopigment concentrations show an increasing trend since 2000.
- *Dissolved Oxygen:* No significant trend was found for dissolved oxygen concentrations.
- *Salinity:* Salinity concentrations show a decreasing trend before the 2007 break and an increasing trend after the break.

#### PBA-6 (Big Bay-SW)

- *Nutrients:* Concentrations of total nitrogen and phosphate have decreased since 2000. No significant trend was found for dissolved inorganic nitrogen and bioactive nitrogen.
- *Total Phytopigments:* Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations have increased since 2000.
- *Salinity:* Salinity concentrations have increased since 2000.

#### PBA-8 (Big Bay-NE)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen and total nitrogen have increased since 2000 while concentrations of phosphate have decreased. No significant trend was found for bioactive nitrogen.
- *Total Phytopigments:* Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations show an increasing trend prior to the 2007 break and no significant trend after the break.
- Salinity: No significant trend was found for salinity concentrations.

#### PBA-9 (Round Cove)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen have increased since 2000 while concentrations of bioactive nitrogen and total nitrogen have decreased. No significant trend was found for phosphate concentrations.
- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations have decreased since 2000.
- Salinity: No significant trend was found for salinity concentrations.

#### PBA-10 (Quanset Pond)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen, bioactive nitrogen, and total nitrogen have increased since 2000 while concentrations of phosphate have decreased.
- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* No significant trend was found for dissolved oxygen concentrations.
- *Salinity:* No significant trend was found for salinity concentrations.

#### PBA-11 (Paw Wah Pond)

- *Nutrients:* Concentrations of bioactive nitrogen and total nitrogen have decreased since 2000. No significant trend was found for dissolved inorganic nitrogen and phosphate.
- *Total Phytopigments:* Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* No significant trend was found for dissolved oxygen concentrations.
- Salinity: Salinity concentrations have increased since 2000.

#### PBA-12 (Namequoit-South)

- *Nutrients:* Concentrations of bioactive nitrogen, total nitrogen, and phosphate have decreased since 2000. No significant trend was found for dissolved inorganic nitrogen.
- *Total Phytopigments:* Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations have increased since 2000.
- Salinity: Salinity concentrations have increased since 2000.

#### PBA-13 (Namequoit-North)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen have increased since 2000. No significant trend was found for the remaining nutrient parameters (bioactive nitrogen, total nitrogen, and phosphate).
- *Total Phytopigments:* Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* No significant trend was found for dissolved oxygen concentrations.
- Salinity: No significant trend was found for salinity concentrations.

#### PBA-14 (Arey's Pond)

- *Nutrients:* No significant trend was found for all four nutrient parameters (dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, and phosphate).
- Total Phytopigments: Concentrations of total phytopigments have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations show no significant trend before the 2007 break and a decreasing trend after the break.
- Salinity: No significant trend was found for salinity concentrations.

#### PBA-15 (Kescayogansett Pond)

- *Nutrients:* Concentrations of bioactive nitrogen and total nitrogen have decreased since 2000 while phosphate concentrations have increased. No significant trend was found for dissolved inorganic nitrogen.
- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* No significant trend was found for dissolved oxygen concentrations.
- Salinity: No significant trend was found for salinity concentrations.

#### PBA-16 (Meetinghouse Pond)

- *Nutrients:* Concentrations of bioactive nitrogen have decreased since 2000. No significant trend was found for the remaining nutrient parameters (dissolved inorganic nitrogen, total nitrogen, and phosphate).
- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations have decreased since 2000.
- Salinity: No significant trend was found for salinity concentrations.

#### WMO-3 (Pochet Mouth)

• *Nutrients:* Concentrations of bioactive nitrogen and total nitrogen have decreased since 2000. No significant trend was found for dissolved inorganic nitrogen and phosphate.

- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* No significant trend was found for dissolved oxygen concentrations.
- Salinity: No significant trend was found for salinity concentrations.

#### WMO-5 (Pochet Upper)

- *Nutrients:* Concentrations of phosphate have decreased since 2000. No significant trend was found for the remaining nutrient parameters (dissolved inorganic nitrogen, bioactive nitrogen, and total nitrogen).
- Total Phytopigments: Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* Dissolved oxygen concentrations show no significant trend before the 2007 break and an increasing trend after the break.
- Salinity: No significant trend was found for salinity concentrations.

#### WMO-6 (Namequoit River Mid)

- *Nutrients:* Concentrations of bioactive nitrogen and total nitrogen have decreased since 2000. No significant trend was found for dissolved inorganic nitrogen and phosphate.
- *Total Phytopigments:* Total phytopigment concentrations have decreased since 2000.
- *Dissolved Oxygen:* No significant trend was found for dissolved oxygen concentrations.
- Salinity: No significant trend was found for salinity concentrations.

#### WMO-10 (River at Rattles Dock)

- *Nutrients:* Concentrations of bioactive nitrogen and total nitrogen have decreased since 2000. No significant trend was found for dissolved inorganic nitrogen and phosphate.
- *Total Phytopigments:* Total phytopigment concentrations have decreased since 2000.
- Dissolved Oxygen: Dissolved oxygen concentrations have increased since 2000.
- *Salinity:* Salinity concentrations show a decreasing trend before the 2007 break and an increasing trend after the break.

#### WMO-12 (Little Quanset Pond)

- *Nutrients:* Concentrations of dissolved inorganic nitrogen, bioactive nitrogen, and total nitrogen have decreased since 2000. No significant trend was found for phosphate.
- Total Phytopigments: No significant trend was found for total phytopigment concentrations.
- Dissolved Oxygen: Dissolved oxygen concentrations have decreased since 2000.
- Salinity: Salinity concentrations have increased since 2000.

#### **Bay-Wide Trends**

All seven of the water quality parameters evaluated demonstrate significant bay-wide trends. Trends for each parameter are summarized below and in Table 5. Six of the seven parameters were best described using a regression equation for trend type 3 (monotonic trend with a slope change after the 2007 break; the exception was salinity). Plots of regression output are provided in Figure 10 through Figure 13. Note that the trendlines displayed in Figure 10 through Figure 13 are for surface concentrations. Trendlines for middle and bottom concentrations have the same shape and significance levels but are shifted upward or downward to account for average differences between depths.

- *Dissolved Inorganic Nitrogen*: Concentrations of dissolved inorganic nitrogen show a significant increasing trend from 2000 to the 2007 Nauset Beach break. The increasing trend has continued after the break.
- *Bioactive Nitrogen*: Bioactive nitrogen concentrations show a significant decreasing trend from 2000 to the 2007 Nauset Beach break. Since the break concentrations are increasing (i.e., the pre-break trend has reversed).
- *Total Nitrogen*: Concentrations of total nitrogen show a significant decreasing trend from 2000 to the 2007 Nauset Beach break. Since the break there is no significant trend in total nitrogen concentrations.
- *Phosphate*: Concentrations of phosphate show a significant increasing trend from 2000 to the 2007 Nauset Beach break. Since the break there is no significant trend in phosphate concentrations.
- *Total Phytopigments*: Total phytopigment concentrations show no significant trend from 2000 to the 2007 Nauset Beach break. Since the break, total phytopigment concentrations have been decreasing.
- *Dissolved Oxygen*: No significant trend in dissolved oxygen concentrations is apparent from 2000 to the 2007 Nauset Beach break. Since the break, dissolved oxygen concentrations have been increasing.
- *Salinity*: The salinity trend was best characterized as a "step-change" type trend, with a statistically significant increase in salinity concentrations after the 2007 break relative to pre-break concentrations.

Table 5. Results of bay-wide trend analysis. The direction of statistically significant trends is indicated by the arrow direction ( $\blacktriangle$ ,  $\blacktriangle$ ,  $\bigstar$  = increase;  $\triangledown$ ,  $\blacktriangledown$ ,  $\blacktriangledown$  = decrease). Arrow colors are used to convey whether

the trend is associated with improved or worsened conditions (green = improved; red = worsened). Station-parameter pairs with no significant trend are symbolized with a black square (**■**). The salinity trend

was characterized as a step-change type trend, with a statistically significant increase in salinity concentrations after the 2007 break, and is not associated with improved or worsened conditions because

| Parameter                    | Pre-Break Trend | Post-Break Trend |
|------------------------------|-----------------|------------------|
| Dissolved Inorganic Nitrogen |                 | <b></b>          |
| Bioactive Nitrogen           | ▼               | <b>A</b>         |
| Total Nitrogen               | ▼               |                  |
| Phosphate                    | <b></b>         | •                |
| Total Phytopigments          | •               | ▼                |
| Dissolved Oxygen             |                 |                  |
| Salinity                     | -               |                  |

it is not directly related to eutrophication.

Like the station-specific trend analysis results, bay-wide trend analysis results demonstrate the complexity of the relationships between nutrient enrichment and ecosystem responses. Pre-break trends show a system with increased trends in two nutrient parameters (dissolved inorganic nitrogen and phosphate), decreased trends in two nutrient parameters (bioactive nitrogen and total nitrogen), and no significant trends in response parameters (total phytopigments and dissolved oxygen). Since the break, trends of increased dissolved inorganic nitrogen and bioactive nitrogen suggest continued nutrient enrichment but trends of decreased total phytopigments and increased dissolved oxygen indicate that any increase in nutrient enrichment has not translated to worsening ecosystem conditions. Additional analysis of other physical factors affecting algal growth and dissolved oxygen (pH, light, water clarity, tidal exchange, etc.) may provide insight into why response parameters have improved despite increased nutrient levels.



Figure 10. Bay-wide trends in dissolved inorganic nitrogen (DIN) concentrations over 2000-2014. Both the pre-break and post-break trends are statistically significant.



Figure 11. Bay-wide trends in bioactive nitrogen concentrations over 2000-2014. Both the pre-break trend and post-break trend are statistically significant.



Figure 12. Bay-wide trends in total nitrogen concentrations over 2000-2014. Only the pre-break trend is statistically significant.



Figure 13. Bay-wide trends in phosphate concentrations over 2000-2014 period. Only the pre-break trend is statistically significant.


Figure 14. Bay-wide trends in total phytopigment concentrations over 2000-2014. Only the post-break trend is statistically significant.



Figure 15. Bay-wide trends in dissolved oxygen concentrations over 2000-2014. Only the post-break trend is statistically significant.



Figure 16. Bay-wide trends in salinity concentrations over 2000-2014. The post-break step change is statistically significant.

## **Conclusions**

Trend analysis results underscore the variability of conditions and complexity of water quality relationships throughout Pleasant Bay. Varied conditions throughout the Bay are reflected in differences in the direction and presence of trends among monitoring stations, while the lack of consistent trends between parameters reflect the complexity of relationships between nutrient inputs, nutrient cycling, ecosystem responses to nutrient enrichment. Overall, trend analysis results do not show that eutrophication has improved or worsened at any one location or bay-wide. However, some stations have trends in individual parameters that suggest increased or decreased nutrient loading and these can be reviewed in conjunction with information on recent restoration efforts to gauge their effectiveness or to highlight areas as future restoration priorities. Furthermore, the presence of opposing trends in nutrient and response parameters (e.g., increasing nutrient concentrations but decreasing total phytopigment concentrations) merits further investigation of nutrient inputs, nutrient cycling, and ecosystem responses to changing nutrient levels in Pleasant Bay.

The trends presented in this report do not explicitly depict water quality as "good" or "bad". Such classifications are typically made by evaluating whether sample data are above or below a numeric target. Trend analysis instead describes the relationship between water quality and time during the period of analysis, specifically whether concentrations have increased or decreased. Targets for water quality parameters analyzed in this study include dissolved oxygen concentrations above 6 milligrams per liter, total phytopigment concentrations below 5 micrograms per liter, and bioactive nitrogen concentrations between 0.098 and 0.405 milligrams per liter (bioactive nitrogen targets vary by station). Although trend analysis results show improved conditions for some parameters in portions of Pleasant Bay, sample data show that numeric targets were consistently not achieved in recent years. For example, the Namequoit-South station (PBA-12) has improving trends in five of the six eutrophication-related parameters analyzed (the exception is dissolved oxygen target. Such results illustrate continued effort is needed to restore the Pleasant Bay ecosystem and why trend analysis results should be one of several pieces of information used to guide restoration planning.

The trend analysis results presented in this report are <u>not</u> intended to be used to draw conclusions on the role of the 2007 break as a driver of water quality change in Pleasant Bay. Trend analysis showed a significant post-break change for some station-parameter pairs and for all parameters in the bay-wide analysis. In some cases, the post-break change is consistent with the expected effect of the break (e.g., the increase in bay-wide salinity concentrations following the break, possibly due to increased exchange of open ocean water). However, increased or decreased concentrations in samples collected after the 2007 break alone do not supply definitive evidence that the break caused a water quality change. Analysis of other potential drivers of change (e.g., trends in nutrient loads from Pleasant Bay tributaries) are needed in order to determine the influence of the 2007 break but such analyses were beyond the scope of this study. Finally, trend analysis results are also <u>not</u> intended to be used for prediction of future conditions. Pleasant Bay is a dynamic system, and conditions in future years may drastically differ from the conditions that contributed to observed trends from 2000-2014. Continued monitoring is

needed to characterize water quality in the coming years and additional sample data may allow for the identification of trends not detected in the 2000-2014 dataset.

### References

- Applied Coastal Research and Engineering, Inc. (2008). Memo to U.S. Army Corps of Engineers. Hydrodynamic Model of Chatham Harbor/Pleasant Bay including 2007 North Breach.
- Baayen, R., Davidson, D., & Bates, D. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of memory and language*, *59*(4), 390-412.
- Bates, D., & Maechler, M. (2010). *Linear mixed-effects models using S4 classes*. Retrieved from http://lme4.r-forge.r-project.org/
- Burnham, K., & Anderson, D. (2002). *Model selection and multimodel inference: a practical informationtheoretic approach.* Springer-Verlag: New York, New York.
- Draper, N., & Smith, H. (1998). Applied Regression Analysis. New York: John Wiley and Sons.
- Hirotugu, A. (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic Control*, 716-723.
- Howes, B., Samimy, R., Schlezinger, D., Kelley, S., Ramsey, J., & Eichner, E. (2006). Linked Watershed-Embayment Model to Determine Critical Nitrogen Loading Thresholds for the Pleasant Bay System, Orleans, Chatham, Brewster and Harwich, Massachusetts. Boston, MA: Massahusetts Estuaries Project, Massachusetts Department of Environmental Protection.
- Iglewicz, B., & Hoaglin, D. (1993). Volume 16: How to Detect and Handle Outliers. In E. Mykytka, *The* ASQC Basic References in Quality Control: Statistical Techniques.
- Pleasant Bay Resource Management Alliance. (2001). *QAPP for the Pleasant Bay Citizen Water Quality Monitoring Program.* Brewster, Chatham, Harwich, and Orleans.
- The Cadmus Group. (2010). Pleasant Bay Alliance Water Quality Monitoring Program: Statistical Analysis of Multi-year Water Quality Monitoring Data.

# **Appendix A. Detailed Methods**

### **Data Compilation**

Water quality data files were provided to Cadmus by the Pleasant Bay Alliance (PBA). These files included a Microsoft Access database containing 2000-2009 monitoring results compiled as part of the previous water quality data analysis project (The Cadmus Group, 2010) and Microsoft Excel spreadsheets containing 2010-2014 monitoring results.

The 2010-2014 spreadsheets were combined into a single spreadsheet and edited so that field (column) names and formats matched field names and formats in the "All\_data" table in the Access database. Some fields were not present in the original 2010-2014 spreadsheets and were either filled using information from other fields or left blank. These included:

- ID (filled by concatenating "Program"-"Station" fields)
- SDID (filled by concatenating "ID"-"Date" fields)
- SDDID (filled by concatenating "ID"-"Date"-"Depth" fields)
- Year (filled with year from "Date" field)
- Analysis\_Site (filled using list of monitoring sites in Pleasant Bay provided by PBA)
- TP (left blank)
- Serial (left blank)
- Sample (left blank)
- Location\_description (left blank)

Notes fields were added for each water quality parameter to store non-numeric entries in results fields. For samples reported as "BDL" (below detection limit) or "<X" (where X is the detection limit), the numeric value was entered as one-half the detection limit. This is a common method for accommodating BDL results and is appropriate for trend analysis (http://www.epa.gov/reg3hwmd/risk/human/info/guide3.htm).

The combined 2010-2014 spreadsheet was imported into the Access database and stored in a table named "All\_data\_2010\_2014". Access generates a list of import errors that primarily indicate data type mismatches between the source spreadsheet and the destination table. These errors were reviewed to confirm that they only occurred when a non-numeric value could not be imported into a numeric field in the database. The notes fields contain these non-numeric values, so all information (including error flags) in the spreadsheets was imported to the database.

#### Data Review

#### Identifying Suspect Data Points and Outliers

The 2010-2014 dataset was reviewed to identify potential measurement or data entry errors and to characterize the prevalence of outliers for the following parameters:

- Water Temperature
- Dissolved Oxygen
- Salinity (lab measured *not* field measured values)
- Secchi Depth
- Phosphate (PO<sub>4</sub>)

- Dissolved Organic Nitrogen (DON)
- Total Dissolved Nitrogen (TDN)
- Particulate Organic Nitrogen (PON)
- Total Nitrogen (TN)
- Particulate Organic Carbon (POC)

- Ammonium (NH<sub>4</sub>)
- Nitrate Plus Nitrite (NO<sub>x</sub>)
- Dissolved Inorganic Nitrogen (DIN)
- Chlorophyll-a (Chla)
- Phaeophyton
- Total Pigments

Methods applied to identify suspect data points and outliers in the 2010-2014 dataset are consistent with those previously applied to the 2000-2009 dataset (The Cadmus Group, 2010). Minimum and maximum values of each parameter were initially examined to identify values that fell outside of typical ranges. This step identified one water temperature value entered as 82.5°C, one NO<sub>x</sub> value entered as 0, and one DO concentration entered as 62 mg/L.

Modified z-scores (Iglewicz & Hoaglin, 1993) were then calculated for each variable. With the exception of water temperature, dissolved oxygen, and salinity, all parameters were log-transformed before calculating modified z-scores because their histograms demonstrated a log-normal distribution. Absolute values of modified z-scores >3.5 were flagged as outliers. Outliers were reviewed and shared with PBA to compare to original monitoring logs. This step identified two additional DO concentrations of 19.6 mg/L and 19.0 mg/L as entry errors. All entry errors were replaced with corrected values in the Access database.

A large number of outliers in a dataset can inhibit the detection of trends over time. Most parameters in the 2010-2014 dataset have few outliers ( $\leq 2\%$  of observations; Table 6). Parameters with higher outlier counts include chlorophyll-a and salinity. Chlorophyll-a is not included in trend analysis (see *Analysis of Water Quality Trends* in this Appendix). Salinity is included in trend analysis and the prevalence of outliers was determined not to be problematic because most outliers were collected from freshwater monitoring sites, which are excluded from station-specific and bay-wide analysis of salinity trends.

| Parameter         | No. of Observations | No. of Outliers | Percent Outliers |
|-------------------|---------------------|-----------------|------------------|
| Water Temperature | 1,039               | 13              | 1%               |
| Salinity (Lab)    | 1,090               | 63              | 6%               |
| Dissolved Oxygen  | 1,019               | 8               | 1%               |
| Secchi Depth      | 585                 | 3               | 1%               |
| PO <sub>4</sub>   | 1,097               | 1               | <1%              |
| NH <sub>4</sub>   | 1,096               | 1               | <1%              |
| NO <sub>x</sub>   | 1,097               | 5               | <1%              |
| DIN               | 1,096               | 2               | <1%              |
| DON               | 1,096               | 1               | <1%              |
| TDN               | 1,096               | 1               | <1%              |
| PON               | 1,101               | 19              | 2%               |
| TN                | 1,095               | 2               | <1%              |
| POC               | 1,101               | 23              | 2%               |
| Chlorophyll-a     | 1,097               | 14              | 1%               |
| Phaeopytin        | 1,097               | 102             | 9%               |
| Total Pigments    | 1,097               | 15              | 1%               |

#### Table 7. Number of outliers in the 2010-2014 dataset for each parameter (based on modified z-scores).

#### **Review of Duplicate Samples**

Duplicate samples are samples collected at the same time and location for quality control purposes. Most trend analysis methods assume that each observation in a dataset is independent of any other observation. Duplicate samples with values that are similar (e.g., sample 1 equal to sample 2) violate this assumption. Conversely, duplicate samples with different values suggest that collection, handling, or equipment error occurred for that sample pair.

The 2010-2014 monitoring dataset includes approximately 185 duplicate samples for a given parameter (the exact number varies by parameter). The similarity of duplicate samples was evaluated by reviewing scatterplots and Pearson correlation coefficients between paired values. All parameters show moderate to high correlation between duplicates (correlation coefficients > 0.5; Table 8). PO<sub>4</sub> duplicates were the most consistently similar (correlation coefficient = 0.99) and phaeophytin duplicates were the most variable (correlation coefficient = 0.57).

To address the lack of independence of duplicate samples, values were combined into a single result (the average of the two samples) for statistical and trend analysis. Duplicate pairs with one value differing by more than 150% of the average were assumed to contain measurement errors and were discarded from statistical and trend analysis. Both approaches are consistent with methods previously applied to the 2000-2009 monitoring dataset (The Cadmus Group, 2010).

| Parameter       | Number of<br>Duplicate Pairs | Correlation<br>Coefficient | Number of Pairs<br>to Remove |
|-----------------|------------------------------|----------------------------|------------------------------|
| Salinity (Lab)  | 183                          | 0.79                       | 0                            |
| PO <sub>4</sub> | 185                          | 0.99                       | 0                            |
| NH <sub>4</sub> | 185                          | 0.87                       | 1                            |
| NO <sub>x</sub> | 185                          | 0.94                       | 2                            |
| DIN             | 185                          | 0.88                       | 1                            |
| DON             | 185                          | 0.53                       | 1                            |
| TDN             | 185                          | 0.64                       | 0                            |
| PON             | 186                          | 0.95                       | 0                            |
| TN              | 184                          | 0.73                       | 0                            |
| POC             | 186                          | 0.93                       | 0                            |
| Chlorophyll-a   | 186                          | 0.93                       | 1                            |
| Phaeophytin     | 186                          | 0.57                       | 18                           |
| Total Pigments  | 186                          | 0.95                       | 1                            |

Table 8. Summary of duplicate samples in the 2010-2014 dataset.



Figure 17. Example scatterplots for duplicate samples displaying high correlation (phosphate; left) and moderate correlation (phaeophytin; right) between pairs.

#### **Review of Paired Surface-Bottom Samples**

Paired surface-bottom samples are samples collected from different depths at the same time and monitoring site. Like duplicate samples, surface-bottom samples can violate the independence assumption of trend analysis techniques.

The 2000-2014 monitoring dataset includes approximately 1,470 paired surface-bottom samples for a given parameter (the exact number varies by parameter). The similarity of surface-bottom samples was evaluated by reviewing scatterplots and Pearson correlation coefficients between paired values. Additionally, Student's t-test for paired samples was used to test whether the mean of surface samples significantly differed the mean of bottom samples. With the exception of water temperature, salinity, and dissolved oxygen, all parameters were log-transformed for comparing surface and bottom samples. This was completed because one assumption of Student's t-test is that variables are normally distributed and histograms indicated that most parameters were log-normally distributed.

All parameters except for dissolved oxygen show moderate to high correlation between surface and bottom samples (correlation coefficients > 0.5; Table 9). Differences between surface and bottom means are statistically significant (at p < 0.05) for twelve parameters. Of these, surface samples were greater in magnitude than bottom samples for salinity, PO<sub>4</sub>, NH<sub>4</sub>, DIN, PON, POC, phaeophytin, and total pigments while bottom samples were greater than surface samples for water temperature, dissolved oxygen, NO<sub>x</sub>, and DON. No significant difference was found between surface and bottom samples for TDN, TN, and chlorophyll-a.

One method to account for differences between surface and bottom conditions in Pleasant Bay is to perform separate trend analyses on surface and bottom samples. However, this approach reduces the sample size in each analysis and smaller sample size corresponds to reduced statistical power to detect true trends. An alternative is to include both surface and bottom samples in a single trend analysis and

to use sample depth as a predictor variable in regression models. This approach was followed for analysis of trends in the 2000-2014 monitoring dataset.

Table 9. Results of t-tests comparing 2000-2014 paired surface-bottom samples. P-values less than 0.05 indicate a statistically significant difference between surface and bottom values. Note that t-tests were applied to log-transformed sample data for all parameters except water temperature, dissolved oxygen, and salinity. Log-transformed means were back-transformed to original units for reporting.

| Parameter                | No. Surface-<br>Bottom Pairs | Pearson<br>Correlation | Mean<br>Surface | Mean<br>Bottom | p-value for Mean<br>Difference |
|--------------------------|------------------------------|------------------------|-----------------|----------------|--------------------------------|
| Water Temperature (°C)   | 1,494                        | 0.93                   | 21.2            | 21.7           | 2.5x10 <sup>-52</sup>          |
| Salinity (ppt)           | 1,463                        | 0.71                   | 30.0            | 29.7           | 1.8x10 <sup>-21</sup>          |
| Dissolved Oxygen (mg/L)  | 1,469                        | 0.68                   | 5.4             | 6.0            | 3.5x10 <sup>-67</sup>          |
| PO₄ (μmol/L)             | 1,471                        | 0.86                   | 1.4             | 1.3            | 1.9x10 <sup>-19</sup>          |
| NH₄ (μmol/L)             | 1,471                        | 0.66                   | 3.3             | 2.6            | 1.6x10 <sup>-23</sup>          |
| NO <sub>x</sub> (μmol/L) | 1,469                        | 0.67                   | 0.5             | 0.5            | 1.7x10 <sup>-7</sup>           |
| DIN (μmol/L)             | 1,468                        | 0.68                   | 4.1             | 3.5            | 1.8x10 <sup>-14</sup>          |
| DON (μmol/L)             | 1,463                        | 0.60                   | 27.3            | 28.7           | 7.6Ex10 <sup>-6</sup>          |
| TDN (μmol/L)             | 1,463                        | 0.62                   | 33.0            | 33.4           | 0.35                           |
| PON (μmol/L)             | 1,449                        | 0.55                   | 8.6             | 7.9            | 3.3x10 <sup>-11</sup>          |
| TN (μmol/L)              | 1,443                        | 0.57                   | 43.3            | 42.6           | 0.09                           |
| POC (µmol/L)             | 1,456                        | 0.53                   | 57.0            | 51.3           | 1.5x10 <sup>-18</sup>          |
| Chlorophyll a (µg/L)     | 1,461                        | 0.60                   | 3.6             | 3.6            | 0.89                           |
| Phaeophytin (µg/L)       | 1,461                        | 0.56                   | 0.9             | 0.8            | 1.5x10 <sup>-7</sup>           |
| Total Pigments (μg/L)    | 1,461                        | 0.65                   | 5.4             | 5.1            | 1.2x10 <sup>-4</sup>           |

#### **Calculating Summary Statistics**

Annual means and confidence intervals around the mean were calculated by year across the range of available data for the following water quality parameters:

- Dissolved Oxygen
- Phosphate
- Dissolved Inorganic Nitrogen
- Bioactive Nitrogen (Dissolved Inorganic Nitrogen + Particulate Organic Nitrogen)
- Total Nitrogen
- Total Pigments

The geometric mean (mean of log-transformed values, back-transformed to the original scale) was used for dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, phosphate, and total pigments because histograms indicated these variables are log-normally distributed. The arithmetic mean was used for dissolved oxygen because histograms indicated they are normally distributed.

Confidence intervals for annual means were calculated at the 90% confidence level. This means that if the same methods were applied to select different samples and compute new confidence intervals, we would expect the true annual mean to fall within the computed interval 90% of the time. Confidence intervals were calculated as:

$$\overline{Y} \pm t^* \frac{s}{\sqrt{N}}$$

where  $\overline{Y}$  is the sample mean, *s* is the sample standard deviation, *N* is the sample size, and  $t^*$  is the 95<sup>th</sup> percentile of the t-distribution with N-1 degrees of freedom.

The percentage of samples that do not meet water quality standards (6 mg/L DO), NOAA thresholds (5 mg/L total pigments), and MEP restoration targets for bioactive nitrogen (varies by site) were also calculated for each site-year pair.

Tables of annual means and confidence intervals are provided in Appendix B. Tables of exceedance frequencies are provided in Appendix C.

#### Analysis of Water Quality Trends

#### Station-Specific Trends

Multiple linear regression was used to evaluate trends in seven water quality parameters at 20 monitoring sites in Pleasant Bay. Although there are 34 monitoring stations in the 2000-2014 dataset, 14 stations are either not actively sampled or contain large data gaps and were excluded from station-specific analysis. These stations are: CM-14, PBA-1, PBA-2, PBA-7, PBA-18, PBA-19, PBA-20, PBA-21, WMO-2, WMO-4, WMO-7, WMO-8, WMO-9, PBA-17A. The seven water quality parameters analyzed were:

- Dissolved Inorganic Nitrogen
- Bioactive Nitrogen
- Total Nitrogen
- Phosphate
- Total Phytopigments
- Dissolved Oxygen
- Salinity

Station-specific trends were analyzed using the "lm" package in the R statistical language. Nine candidate multiple linear regression models were created for each site-parameter pair using different combinations of the following predictor variables:

- Sample date
- "Break" term denoting whether the sample was collected before or after the 2007 Nauset Beach break (coded as 0 if sample was collected before break and 1 if sample was collected after break)
- "Date-Break" interaction term representing the combined effect sample date and the 2007 Nauset Beach break
- Logarithm of 7-day rainfall prior to sample collection measured at Chatham Municipal Airport
- Lab-measured sample salinity<sup>3</sup>
- Field-measured water temperature at the time of sample collection
- Sample depth

<sup>&</sup>lt;sup>3</sup> Salinity was included as a predictor variable for dissolved oxygen, phosphate, dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, and total phytopigments. Salinity was not included as a predictor variable for models with salinity as the response variable.

Table 10 lists the different combinations of predictor variables used in the nine candidate models. The "best" model for each parameter out of the nine candidates was identified using Akaike's Information Criterion (AIC) (Hirotugu, 1974), a measure of relative quality within a collection of regression models. This approach identifies the model that provides the most explanatory power while minimizing the number of predictor variables. The simplest possible model is preferred unless an additional predictor variable provides significantly more explanatory power. Identification of the best model also considered the number of sample data points available for analysis. The rule of thumb in multiple linear regression is that one predictor variable per 20 samples should be included in the model. After selecting the best model for each of the site-parameter pair, the statistical significance of the trend over time was evaluated using the p-value for the slope of sample date, break, and the date-break interaction term (if included in the best model) and a significance level of 0.05.

The candidate regression equations described one of three trend types:

- 1. Monotonic change over time that is not affected by the 2007 Nauset Beach break (equations 1 through 3 in Table 10);
- 2. Step change following the 2007 Nauset Beach break (equations 4 through 6 in Table 10);
- 3. Monotonic change over time with a slope change following the 2007 Nauset Beach break (equations 7 through 9 in Table 10).

Results of station-specific trend analysis are presented in Appendix D and Appendix F.

Table 10. Nine candidate multiple linear regression models evaluated for analysis of station-specific trends. Models differ in the predictor variables used (variables on the right-hand side of each equation). Predictor variables included sample date (Date), "Break" term denoting whether the sample was collected before or after the 2007 Nauset Beach break, Date-Break interaction term representing the combined effect sample date and the 2007 break (Date:Break), logarithm of 7-day rainfall prior to sample collection (Rain), labmeasured sample salinity (Salinity), field-measured water temperature at the time of sample collection (Temp), and sample depth (Depth).

| Model Equations                                                          |
|--------------------------------------------------------------------------|
| 1) Response = Date                                                       |
| 2) Response = Date + Depth                                               |
| 3) Response = Depth + Depth + Temp + Rain + Salinity                     |
| 4) Response = Break                                                      |
| 5) Response = Break + Depth                                              |
| 6) Response = Break + Depth + Temp + Rain + Salinity                     |
| 7) Response = Date + Break + Date:Break                                  |
| 8) Response = Date + Break + Date:Break + Depth                          |
| 9) Response = Date + Break + Date:Break + Depth + Temp + Rain + Salinity |

#### Bay-Wide Trends

Mixed effects models were used to evaluate bay-wide trends in dissolved oxygen, salinity, phosphate, dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, and total phytopigments using the "Imer" function (Bates & Maechler, 2010) in the R programming language. Six candidate models were created for each parameter using different combinations of the following predictor variables:

• Sample date

- "Break" term denoting whether the sample was collected before or after the 2007 Nauset Beach break (coded as 0 if sample was collected before break and 1 if sample was collected after break)
- "Date-Break" interaction term representing the combined effect sample date and the 2007 Nauset Beach break
- Logarithm of 7-day rainfall prior to sample collection measured at Chatham Municipal Airport
- Lab-measured sample salinity<sup>4</sup>
- Field-measured water temperature at the time of sample collection
- Sample depth

All candidate models included sample depth as a predictor variable with a fixed effect on the response variable. All candidate models also included site ID as a predictor with a random effect on the intercept, Date slope, Break slope, and Date-Break interaction slope. Candidate regression equations are shown in Table 11.

Like the station-specific trend analysis, the candidate regression equations described one of three trend types:

- 1. Monotonic change over time that is not affected by the 2007 Nauset Beach break (equations 1 and 1C in Table 11);
- 2. Step change following the 2007 Nauset Beach break (equations 2 and 2C in Table 11);
- 3. Monotonic change over time with a slope change following the 2007 Nauset Beach break (equations 3 and 3C in Table 11).

For each of the above, two separate candidate models were developed, one with no additional predictor variables and one including salinity, temperature, and 7-day rainfall as additional predictors.

Table 11. Six candidate mixed effects models evaluated for analysis of bay-wide trends. Models differ in the predictor variables used (variables on the right-hand side of each equation). Predictor variables included sample date (Date), "Break" term denoting whether the sample was collected before or after the 2007 Nauset Beach break, "Date-Break" interaction term representing the combined effect sample date and the 2007 break (Date:Break), logarithm of 7-day rainfall prior to sample collection (Rain), labmeasured sample salinity (Salinity), field-measured water temperature at the time of sample collection (Temp), and sample depth (Depth).

| Model Number | Model Equation                                                        |
|--------------|-----------------------------------------------------------------------|
| 1            | Response = Date + Depth                                               |
| 1C           | Response = Date + Depth + Salinity + Temp + Rain                      |
| 2            | Response = Break + Depth                                              |
| 2C           | Response = Break + Depth + Salinity + Temp + Rain                     |
| 3            | Response = Date + Break + Date:Break + Depth                          |
| 3C           | Response = Date + Break + Date:Break + Depth + Salinity + Temp + Rain |

The "best" bay-wide model for each water quality parameter from the six candidates was selected using AIC values to find the model that provided the most explanatory power while minimizing the number of predictor variables.

<sup>&</sup>lt;sup>4</sup> Salinity was included as a predictor variable for dissolved oxygen, phosphate, dissolved inorganic nitrogen, bioactive nitrogen, total nitrogen, and total phytopigments. Salinity was not included as a predictor variable for models with salinity as the response variable.

After selecting the best model for each of the seven water quality parameters, the statistical significance of the trend over time was evaluated using the p-value for the slope of sample date, break, and the date-break interaction term (if included in the best model) and a significance level of 0.05. P-values for model coefficients were estimated using the "summary" function of the "ImerTEST" package in R.

Results of bay-wide trend analysis are presented in Appendix E.

## **Appendix B. Summary Statistics Tables**

The following tables present summary statistics for each site in Pleasant Bay. Logarithmic transformations were applied to the total nitrogen, bioactive nitrogen, total pigments, phosphate, and dissolved inorganic nitrogen data before calculating the means and 90% confidence intervals (CI). The resulting estimates were then "back-transformed" into their original units. Therefore, these estimates are better referred to as geometric means and CIs. Dissolved oxygen did not require this transformation prior to calculation of the mean and CIs because it is normally distributed.

#### **Dissolved Inorganic Nitrogen**

| Site   | 9      |      |      |      |      |      | Disso | olved Ino | rganic Ni | trogen (µ | ıg/L) |      |      |      |      |      |
|--------|--------|------|------|------|------|------|-------|-----------|-----------|-----------|-------|------|------|------|------|------|
|        |        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005  | 2006      | 2007      | 2008      | 2009  | 2010 | 2011 | 2012 | 2013 | 2014 |
| CM-13  | Mean   | 32   | 19   | 25   | 32   | 36   | 23    | 39        | 53        | 68        | 58    | 64   | 79   | 153  | 88   | 76   |
|        | 90% CI | 23   | 15   | 18   | 15   | 27   | 16    | 27        | 47        | 52        | 50    | 52   | 55   | 116  | 69   | 57   |
|        |        | 45   | 25   | 33   | 69   | 48   | 34    | 57        | 60        | 89        | 67    | 79   | 115  | 201  | 113  | 100  |
| CM-14  | Mean   | 124  | 91   | 112  | 151  | 131  | 123   |           |           |           |       |      |      |      |      |      |
|        | 90% CI | 67   | 25   | 61   | 69   | 85   | 57    |           |           |           |       |      |      |      |      |      |
|        |        | 230  | 325  | 206  | 331  | 203  | 263   |           |           |           |       |      |      |      |      |      |
| PBA-1  | Mean   | 19   | 12   | 20   | 20   | 12   | 20    | 29        |           |           |       |      |      |      | 42   | 53   |
|        | 90% CI | 14   | 7    | 16   | 10   | 7    | 13    | 18        |           |           |       |      |      |      | 33   | 38   |
|        |        | 27   | 21   | 25   | 39   | 22   | 31    | 47        |           |           |       |      |      |      | 53   | 74   |
| PBA-2  | Mean   | 37   | 15   | 26   | 35   | 23   |       |           |           |           |       |      |      |      |      |      |
|        | 90% CI | 23   | 7    | 19   | 28   | 12   |       |           |           |           |       |      |      |      |      |      |
|        |        | 61   | 30   | 36   | 46   | 43   |       |           |           |           |       |      |      |      |      |      |
| PBA-3  | Mean   | 39   | 35   | 40   | 67   | 111  | 51    | 92        | 101       | 102       | 92    | 112  | 145  | 106  | 29   | 64   |
|        | 90% CI | 25   | 25   | 27   | 38   | 70   | 26    | 51        | 53        | 65        | 29    | 81   | 78   | 77   | 22   | 48   |
|        |        | 60   | 49   | 61   | 120  | 175  | 100   | 166       | 191       | 158       | 287   | 155  | 270  | 146  | 38   | 86   |
| PBA-4  | Mean   | 70   | 40   | 58   | 80   | 80   | 57    | 73        | 67        | 43        | 52    | 92   | 51   | 90   | 42   | 33   |
|        | 90% CI | 42   | 20   | 40   | 46   | 57   | 43    | 40        | 43        | 31        | 31    | 58   | 34   | 74   | 34   | 28   |
|        |        | 115  | 83   | 82   | 138  | 112  | 75    | 131       | 103       | 60        | 89    | 145  | 75   | 110  | 52   | 39   |
| PBA-5  | Mean   | 30   | 12   | 51   | 25   | 64   | 64    | 252       | 81        | 30        | 73    | 89   | 74   | 69   | 21   | 46   |
|        | 90% CI | 16   | 5    | 18   | 4    | 40   | 25    | 127       | 12        | 7         | 8     | 48   | 43   | 38   | 9    | 14   |
|        |        | 56   | 24   | 147  | 148  | 105  | 165   | 498       | 527       | 135       | 667   | 165  | 126  | 123  | 50   | 153  |
| PBA-5A | Mean   |      |      | 156  | 328  | 313  | 544   | 370       | 149       | 351       | 462   | 303  | 305  | 60   | 116  | 205  |
|        | 90% CI |      |      | 46   | 150  | 192  | 260   | 273       | 30        | 222       | 290   | 143  | 148  | 32   | 68   | 102  |
|        |        |      |      | 525  | 718  | 512  | 1,139 | 503       | 740       | 556       | 735   | 640  | 627  | 112  | 198  | 413  |
| PBA-6  | Mean   | 23   | 27   | 22   | 39   | 18   | 22    |           |           |           |       | 17   | 28   | 47   | 18   | 32   |
|        | 90% Cl | 12   | 13   | 13   | 24   | 11   | 15    |           |           |           |       | 11   | 17   | 38   | 10   | 22   |
|        |        | 45   | 54   | 38   | 64   | 30   | 31    |           |           |           |       | 29   | 46   | 58   | 31   | 46   |
| PBA-7  | Mean   | 41   | 15   | 22   | 34   | 20   | 20    |           |           |           |       |      |      |      |      |      |
|        | 90% Cl | 23   | 7    | 17   | 20   | 12   | 10    |           |           |           |       |      |      |      |      |      |
|        |        | 74   | 32   | 29   | 56   | 33   | 37    |           |           |           |       |      |      |      |      |      |
| PBA-8  | Mean   | 41   | 11   | 20   | 34   | 20   | 18    | 45        | 29        | 17        | 27    | 33   | 73   | 94   | 100  | 31   |
|        | 90% CI | 35   | 7    | 16   | 21   | 13   | 13    | 29        | 20        | 10        | 22    | 24   | 44   | 78   | 60   | 21   |
|        |        | 48   | 17   | 25   | 55   | 32   | 25    | 69        | 43        | 30        | 33    | 47   | 121  | 114  | 166  | 45   |
| PBA-9  | Mean   | 46   | 27   | 29   | 51   | 63   | 24    | 88        | 54        | 28        | 51    | 57   | 74   | 111  | 43   | 43   |
|        | 90% CI | 34   | 19   | 18   | 34   | 49   | 17    | 58        | 35        | 12        | 43    | 37   | 51   | 96   | 31   | 26   |

|         |        | 61  | 39  | 46  | 77  | 83  | 36  | 135 | 84  | 66  | 60  | 86  | 108 | 129 | 60  | 71  |
|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| PBA-10  | Mean   | 21  | 23  | 30  | 52  | 41  | 37  | 50  | 53  | 34  | 34  | 59  | 61  | 60  | 38  | 43  |
|         | 90% CI | 12  | 15  | 24  | 40  | 28  | 26  | 33  | 33  | 21  | 19  | 46  | 48  | 50  | 26  | 27  |
|         |        | 37  | 37  | 38  | 68  | 61  | 53  | 77  | 85  | 55  | 58  | 75  | 77  | 72  | 56  | 69  |
| PBA-11  | Mean   | 42  | 46  | 50  | 35  | 43  | 33  | 75  | 68  | 28  | 33  | 51  | 35  | 70  | 34  | 35  |
|         | 90% CI | 25  | 28  | 30  | 15  | 32  | 23  | 33  | 43  | 17  | 21  | 38  | 22  | 46  | 14  | 18  |
|         |        | 71  | 76  | 84  | 85  | 58  | 48  | 171 | 107 | 46  | 52  | 67  | 56  | 108 | 83  | 71  |
| PBA-12  | Mean   | 107 | 35  | 74  | 97  | 74  | 45  | 53  | 87  | 43  | 40  | 51  | 52  | 92  | 49  | 60  |
|         | 90% CI | 51  | 24  | 49  | 71  | 56  | 38  | 37  | 64  | 38  | 32  | 46  | 37  | 78  | 38  | 47  |
|         |        | 226 | 51  | 111 | 133 | 97  | 53  | 76  | 118 | 50  | 51  | 57  | 71  | 108 | 64  | 76  |
| PBA-13  | Mean   | 72  | 43  | 76  | 73  | 76  | 43  | 77  | 95  | 73  | 63  | 103 | 65  | 132 | 87  | 105 |
|         | 90% CI | 46  | 28  | 56  | 48  | 56  | 26  | 60  | 66  | 55  | 49  | 90  | 47  | 115 | 66  | 83  |
|         |        | 111 | 67  | 103 | 111 | 102 | 72  | 99  | 137 | 97  | 82  | 116 | 89  | 153 | 114 | 133 |
| PBA-14  | Mean   | 126 | 88  | 98  | 76  | 99  | 88  | 150 |     |     |     | 113 | 113 | 147 | 101 | 118 |
|         | 90% CI | 99  | 66  | 60  | 45  | 77  | 57  | 103 |     |     |     | 69  | 87  | 104 | 72  | 84  |
|         |        | 160 | 116 | 158 | 130 | 127 | 136 | 220 |     |     |     | 184 | 147 | 209 | 142 | 165 |
| PBA-15  | Mean   | 104 | 69  | 124 | 125 | 141 | 126 | 91  | 121 | 185 | 94  | 118 | 119 | 144 | 58  | 96  |
|         | 90% CI | 79  | 51  | 81  | 73  | 113 | 98  | 47  | 92  | 148 | 70  | 91  | 87  | 110 | 36  | 68  |
|         |        | 137 | 93  | 189 | 213 | 177 | 162 | 173 | 161 | 231 | 126 | 152 | 163 | 189 | 93  | 135 |
| PBA-16  | Mean   | 151 | 125 | 128 | 224 | 92  | 97  | 106 |     |     |     | 201 | 130 | 142 | 126 | 128 |
|         | 90% CI | 103 | 41  | 55  | 97  | 48  | 47  | 40  |     |     |     | 144 | 92  | 113 | 98  | 102 |
|         |        | 222 | 385 | 295 | 515 | 179 | 199 | 285 |     |     |     | 280 | 185 | 178 | 161 | 161 |
| PBA-17A | Mean   |     |     |     |     |     |     |     |     |     |     | 34  | 41  | 41  | 24  | 21  |
|         | 90% CI |     |     |     |     |     |     |     |     |     |     | 23  | 17  | 25  | 13  | 12  |
|         |        |     |     |     |     |     |     |     |     |     |     | 49  | 98  | 65  | 42  | 36  |
| PBA-18  | Mean   |     |     | 18  | 26  | 13  | 20  |     |     |     |     |     |     |     |     |     |
|         | 90% CI |     |     | 15  | 19  | 9   | 15  |     |     |     |     |     |     |     |     |     |
|         |        |     |     | 22  | 37  | 18  | 26  |     |     |     |     |     |     |     |     |     |
| PBA-19  | Mean   |     |     | 37  | 13  | 47  | 101 |     |     |     |     |     |     |     | 24  | 57  |
|         | 90% CI |     |     | 15  | 4   | 28  | 52  |     |     |     |     |     |     |     | 20  | 35  |
|         |        |     |     | 90  | 43  | 78  | 198 |     |     |     |     |     |     |     | 28  | 95  |
| PBA-20  | Mean   |     |     | 31  | 31  | 17  | 24  |     |     |     |     |     |     |     | 17  | 72  |
|         | 90% CI |     |     | 16  | 20  | 9   | 19  |     |     |     |     |     |     |     | 9   | 52  |
|         |        |     |     | 59  | 47  | 29  | 31  |     |     |     |     |     |     |     | 32  | 101 |
| PBA-21  | Mean   |     |     | 44  | 53  | 39  | 31  |     |     |     |     |     |     |     | 34  | 38  |
|         | 90% CI |     |     | 30  | 40  | 30  | 24  |     |     |     |     |     |     |     | 26  | 27  |
|         |        |     |     | 66  | 70  | 50  | 39  |     |     |     |     |     |     |     | 45  | 54  |
| WMO-2   | Mean   |     | 15  | 20  | 45  | 32  |     |     |     |     |     |     |     |     |     |     |

|        | 90% CI | 8      | 10  | 26  | 18  |     |     |     |     |     |     |     |     |     |     |
|--------|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|        |        | 28     | 40  | 78  | 56  |     |     |     |     |     |     |     |     |     |     |
| WMO-3  | Mean   | 44     | 71  | 68  | 62  |     | 77  | 95  | 55  | 44  | 83  | 73  | 129 | 61  | 57  |
|        | 90% CI | 31     | 40  | 48  | 42  |     | 48  | 71  | 37  | 24  | 68  | 66  | 97  | 40  | 37  |
|        |        | 63     | 124 | 96  | 92  |     | 126 | 125 | 81  | 80  | 100 | 81  | 171 | 93  | 87  |
| WMO-4  | Mean   | 63     | 132 | 106 | 101 |     |     |     |     |     |     |     |     |     |     |
|        | 90% CI | 41     | 88  | 56  | 73  |     |     |     |     |     |     |     |     |     |     |
|        |        | 97     | 197 | 201 | 138 |     |     |     |     |     |     |     |     |     |     |
| WMO-5  | Mean   | 79     | 136 | 173 | 132 | 112 | 122 | 128 | 105 | 135 | 94  | 123 | 188 | 74  | 89  |
|        | 90% CI | 46     | 58  | 115 | 103 | 57  | 70  | 74  | 79  | 92  | 68  | 93  | 136 | 55  | 66  |
|        |        | 137    | 319 | 260 | 168 | 220 | 214 | 222 | 140 | 199 | 130 | 163 | 260 | 99  | 120 |
| WMO-6  | Mean   | 205    | 112 | 83  | 109 |     | 160 | 124 | 103 | 83  | 148 | 117 | 136 | 79  | 101 |
|        | 90% CI | 110    | 69  | 44  | 83  |     | 110 | 48  | 83  | 38  | 76  | 79  | 104 | 59  | 67  |
|        |        | 380    | 184 | 153 | 142 |     | 234 | 319 | 127 | 183 | 288 | 174 | 178 | 105 | 154 |
| WMO-7  | Mean   | 153    | 103 | 84  | 93  |     |     |     |     |     |     |     |     |     |     |
|        | 90% CI | 70     | 55  | 53  | 73  |     |     |     |     |     |     |     |     |     |     |
|        |        | 337    | 191 | 132 | 118 |     |     |     |     |     |     |     |     |     |     |
| WMO-8  | Mean   | 64     | 111 | 127 | 98  |     |     |     |     |     |     |     |     | 68  | 117 |
|        | 90% CI | 22     | 68  | 71  | 74  |     |     |     |     |     |     |     |     | 58  | 69  |
|        |        | 188    | 180 | 228 | 131 |     |     |     |     |     |     |     |     | 78  | 200 |
| WMO-9  | Mean   | 115    | 114 | 130 | 146 | 77  |     |     |     |     |     |     |     |     | 121 |
|        | 90% CI | <br>97 | 56  | 81  | 107 | 38  |     |     |     |     |     |     |     |     |     |
|        |        | 136    | 233 | 207 | 199 | 152 |     |     |     |     |     |     |     |     |     |
| WMO-10 | Mean   | 69     | 95  | 143 | 125 |     | 119 | 125 | 151 | 101 | 130 | 114 | 152 | 109 | 109 |
|        | 90% CI | 25     | 56  | 84  | 65  |     | 71  | 68  | 137 | 82  | 106 | 90  | 132 | 88  | 84  |
|        |        | 195    | 159 | 241 | 239 |     | 197 | 227 | 167 | 124 | 159 | 146 | 175 | 136 | 143 |
| WMO-12 | Mean   | 46     | 43  | 72  | 89  |     |     |     |     |     | 102 | 150 | 125 | 99  | 99  |
|        | 90% CI | 23     | 16  | 41  | 64  |     |     |     |     |     | 56  | 99  | 57  | 52  | 68  |
|        |        | 89     | 120 | 126 | 124 |     |     |     |     |     | 187 | 228 | 273 | 190 | 144 |

#### **Bioactive Nitrogen**

| Site   | 9      |      |      |       |      |      |       | Bioactiv | e Nitroge | en (μg/L) |      |       |      |       |      |      |
|--------|--------|------|------|-------|------|------|-------|----------|-----------|-----------|------|-------|------|-------|------|------|
|        |        | 2000 | 2001 | 2002  | 2003 | 2004 | 2005  | 2006     | 2007      | 2008      | 2009 | 2010  | 2011 | 2012  | 2013 | 2014 |
| CM-13  | Mean   | 166  | 137  | 189   | 163  | 164  | 122   | 125      | 141       | 155       | 141  | 132   | 208  | 255   | 163  | 152  |
|        | 90% CI | 148  | 127  | 174   | 139  | 149  | 99    | 100      | 122       | 137       | 126  | 115   | 185  | 205   | 143  | 128  |
|        |        | 185  | 149  | 205   | 192  | 179  | 150   | 155      | 162       | 177       | 158  | 151   | 234  | 316   | 187  | 179  |
| CM-14  | Mean   | 367  | 244  | 273   | 294  | 270  | 227   |          |           |           |      |       |      |       |      |      |
|        | 90% CI | 295  | 120  | 197   | 190  | 190  | 126   |          |           |           |      |       |      |       |      |      |
|        |        | 457  | 497  | 376   | 455  | 384  | 411   |          |           |           |      |       |      |       |      |      |
| PBA-1  | Mean   | 133  | 92   | 124   | 98   | 91   | 84    | 72       |           |           |      |       |      |       | 93   | 128  |
|        | 90% CI | 119  | 81   | 115   | 83   | 79   | 77    | 64       |           |           |      |       |      |       | 88   | 106  |
|        |        | 148  | 104  | 134   | 116  | 106  | 93    | 81       |           |           |      |       |      |       | 99   | 153  |
| PBA-2  | Mean   | 151  | 106  | 134   | 106  | 101  |       |          |           |           |      |       |      |       |      |      |
|        | 90% CI | 126  | 93   | 103   | 88   | 88   |       |          |           |           |      |       |      |       |      |      |
|        |        | 180  | 121  | 174   | 127  | 115  |       |          |           |           |      |       |      |       |      |      |
| PBA-3  | Mean   | 190  | 174  | 251   | 290  | 331  | 256   | 227      | 272       | 225       | 241  | 223   | 315  | 258   | 143  | 171  |
|        | 90% CI | 165  | 143  | 222   | 217  | 267  | 211   | 167      | 182       | 183       | 155  | 190   | 249  | 208   | 126  | 148  |
|        |        | 219  | 212  | 282   | 386  | 410  | 311   | 308      | 407       | 277       | 374  | 262   | 399  | 322   | 163  | 196  |
| PBA-4  | Mean   | 217  | 190  | 226   | 219  | 191  | 159   | 171      | 161       | 129       | 176  | 166   | 140  | 183   | 130  | 121  |
|        | 90% CI | 180  | 131  | 195   | 182  | 158  | 136   | 122      | 134       | 117       | 117  | 120   | 118  | 166   | 117  | 116  |
|        |        | 263  | 275  | 261   | 264  | 231  | 187   | 241      | 192       | 142       | 263  | 229   | 166  | 202   | 145  | 126  |
| PBA-5  | Mean   | 225  | 232  | 238   | 270  | 234  | 221   | 403      | 325       | 276       | 265  | 228   | 351  | 246   | 322  | 232  |
|        | 90% CI | 163  | 183  | 178   | 202  | 172  | 189   | 291      | 225       | 185       | 114  | 164   | 244  | 202   | 263  | 173  |
|        |        | 311  | 295  | 317   | 362  | 319  | 259   | 559      | 471       | 410       | 616  | 318   | 506  | 300   | 394  | 312  |
| PBA-5A | Mean   |      |      | 531   | 617  | 576  | 824   | 591      | 795       | 702       | 674  | 756   | 436  | 834   | 637  | 577  |
|        | 90% CI |      |      | 244   | 462  | 441  | 522   | 465      | 536       | 558       | 520  | 535   | 280  | 627   | 589  | 392  |
|        |        |      |      | 1,156 | 823  | 754  | 1,300 | 751      | 1,179     | 883       | 872  | 1,067 | 677  | 1,109 | 689  | 848  |
| PBA-6  | Mean   | 221  | 198  | 214   | 181  | 158  | 175   |          |           |           |      | 138   | 264  | 148   | 159  | 162  |
|        | 90% CI | 156  | 150  | 190   | 148  | 142  | 159   |          |           |           |      | 110   | 184  | 116   | 139  | 146  |
|        |        | 313  | 263  | 241   | 221  | 176  | 194   |          |           |           |      | 173   | 378  | 190   | 182  | 179  |
| PBA-7  | Mean   | 179  | 141  | 172   | 149  | 146  | 147   |          |           |           |      |       |      |       |      |      |
|        | 90% CI | 149  | 115  | 142   | 126  | 125  | 109   |          |           |           |      |       |      |       |      |      |
|        |        | 214  | 173  | 207   | 177  | 171  | 197   |          |           |           |      |       |      |       |      |      |
| PBA-8  | Mean   | 169  | 135  | 191   | 164  | 132  | 138   | 147      | 114       | 114       | 127  | 98    | 216  | 172   | 224  | 133  |
|        | 90% CI | 137  | 114  | 155   | 131  | 119  | 113   | 112      | 98        | 91        | 87   | 89    | 159  | 155   | 182  | 112  |
|        |        | 208  | 160  | 235   | 205  | 147  | 169   | 194      | 132       | 142       | 187  | 107   | 294  | 192   | 276  | 158  |
| PBA-9  | Mean   | 254  | 236  | 286   | 247  | 216  | 214   | 252      | 204       | 231       | 180  | 222   | 194  | 251   | 243  | 252  |
|        | 90% CI | 198  | 185  | 243   | 221  | 203  | 191   | 223      | 183       | 197       | 140  | 197   | 163  | 235   | 207  | 223  |

|         |        | 325 | 302 | 338 | 276 | 229 | 239 | 285 | 226 | 272 | 233 | 251 | 232 | 268 | 286 | 286 |
|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| PBA-10  | Mean   | 171 | 162 | 186 | 208 | 179 | 161 | 174 | 150 | 210 | 150 | 186 | 221 | 215 | 223 | 228 |
|         | 90% CI | 127 | 133 | 170 | 182 | 159 | 137 | 150 | 124 | 175 | 130 | 165 | 185 | 195 | 191 | 192 |
|         |        | 229 | 198 | 205 | 238 | 202 | 190 | 203 | 182 | 252 | 173 | 209 | 264 | 238 | 260 | 271 |
| PBA-11  | Mean   | 192 | 248 | 237 | 356 | 251 | 211 | 262 | 142 | 119 | 164 | 160 | 163 | 228 | 274 | 210 |
|         | 90% CI | 146 | 152 | 196 | 208 | 181 | 155 | 143 | 112 | 91  | 104 | 122 | 143 | 153 | 154 | 133 |
|         |        | 254 | 405 | 288 | 608 | 349 | 287 | 482 | 180 | 155 | 259 | 209 | 186 | 340 | 488 | 329 |
| PBA-12  | Mean   | 254 | 126 | 198 | 183 | 168 | 135 | 128 | 170 | 115 | 134 | 119 | 260 | 166 | 112 | 151 |
|         | 90% CI | 177 | 110 | 162 | 148 | 157 | 119 | 101 | 136 | 102 | 107 | 109 | 160 | 148 | 97  | 140 |
|         |        | 364 | 143 | 242 | 226 | 181 | 154 | 163 | 212 | 130 | 167 | 129 | 423 | 187 | 130 | 162 |
| PBA-13  | Mean   | 170 | 135 | 193 | 206 | 168 | 147 | 155 | 170 | 134 | 135 | 174 | 149 | 199 | 156 | 174 |
|         | 90% CI | 137 | 117 | 170 | 174 | 152 | 134 | 129 | 139 | 108 | 116 | 158 | 133 | 178 | 133 | 148 |
|         |        | 212 | 156 | 218 | 244 | 184 | 162 | 186 | 207 | 167 | 158 | 191 | 168 | 222 | 183 | 205 |
| PBA-14  | Mean   | 305 | 255 | 328 | 290 | 334 | 313 | 325 |     |     |     | 289 | 227 | 375 | 319 | 302 |
|         | 90% CI | 239 | 213 | 270 | 250 | 307 | 281 | 246 |     |     |     | 266 | 184 | 340 | 254 | 254 |
|         |        | 390 | 305 | 399 | 337 | 363 | 350 | 430 |     |     |     | 313 | 279 | 413 | 402 | 361 |
| PBA-15  | Mean   | 272 | 190 | 348 | 320 | 335 | 302 | 294 | 274 | 312 | 201 | 247 | 308 | 265 | 199 | 218 |
|         | 90% CI | 199 | 177 | 263 | 253 | 274 | 271 | 233 | 228 | 282 | 183 | 230 | 270 | 242 | 174 | 192 |
|         |        | 372 | 205 | 460 | 404 | 411 | 337 | 370 | 329 | 345 | 221 | 266 | 352 | 290 | 228 | 246 |
| PBA-16  | Mean   | 300 | 350 | 340 | 460 | 288 | 345 | 291 |     |     |     | 307 | 263 | 300 | 256 | 252 |
|         | 90% CI | 233 | 189 | 248 | 296 | 263 | 279 | 226 |     |     |     | 243 | 215 | 256 | 226 | 234 |
|         |        | 387 | 646 | 465 | 716 | 315 | 428 | 374 |     |     |     | 386 | 321 | 351 | 291 | 270 |
| PBA-17A | Mean   |     |     |     |     |     |     |     |     |     |     | 105 | 118 | 113 | 95  | 102 |
|         | 90% CI |     |     |     |     |     |     |     |     |     |     | 86  | 81  | 92  | 91  | 83  |
|         |        |     |     |     |     |     |     |     |     |     |     | 130 | 170 | 138 | 99  | 125 |
| PBA-18  | Mean   |     |     | 158 | 108 | 122 | 101 |     |     |     |     |     |     |     |     |     |
|         | 90% CI |     |     | 138 | 91  | 109 | 90  |     |     |     |     |     |     |     |     |     |
|         |        |     |     | 180 | 128 | 138 | 114 |     |     |     |     |     |     |     |     |     |
| PBA-19  | Mean   |     |     | 200 | 109 | 141 | 188 |     |     |     |     |     |     |     | 78  | 143 |
|         | 90% CI |     |     | 125 | 90  | 113 | 123 |     |     |     |     |     |     |     | 69  | 110 |
|         |        |     |     | 321 | 133 | 176 | 288 |     |     |     |     |     |     |     | 87  | 185 |
| PBA-20  | Mean   |     |     | 194 | 128 | 120 | 118 |     |     |     |     |     |     |     | 110 | 172 |
|         | 90% CI |     |     | 163 | 116 | 98  | 104 |     |     |     |     |     |     |     | 75  | 144 |
|         |        |     |     | 232 | 142 | 145 | 134 |     |     |     |     |     |     |     | 160 | 205 |
| PBA-21  | Mean   |     |     | 165 | 149 | 116 | 109 |     |     |     |     |     |     |     | 114 | 120 |
|         | 90% CI |     |     | 142 | 128 | 101 | 95  |     |     |     |     |     |     |     | 104 | 106 |
|         |        |     |     | 192 | 173 | 133 | 125 |     |     |     |     |     |     |     | 125 | 135 |
| WMO-2   | Mean   |     | 150 | 200 | 177 | 147 |     |     |     |     |     |     |     |     |     |     |

|        | 90% CI | 123 | 177 | 148 | 128 |     |     |     |     |     |     |     |     |     |     |
|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|        |        | 182 | 227 | 211 | 168 |     |     |     |     |     |     |     |     |     |     |
| WMO-3  | Mean   | 163 | 193 | 185 | 158 |     | 146 | 157 | 116 | 103 | 146 | 147 | 210 | 122 | 134 |
|        | 90% CI | 130 | 166 | 162 | 125 |     | 114 | 134 | 86  | 67  | 133 | 136 | 180 | 104 | 118 |
|        |        | 204 | 224 | 213 | 199 |     | 187 | 184 | 156 | 159 | 160 | 159 | 246 | 144 | 152 |
| WMO-4  | Mean   | 212 | 270 | 257 | 198 |     |     |     |     |     |     |     |     |     |     |
|        | 90% CI | 148 | 223 | 210 | 148 |     |     |     |     |     |     |     |     |     |     |
|        |        | 303 | 327 | 315 | 264 |     |     |     |     |     |     |     |     |     |     |
| WMO-5  | Mean   | 240 | 262 | 345 | 248 | 235 | 235 | 231 | 214 | 245 | 219 | 243 | 342 | 182 | 222 |
|        | 90% CI | 144 | 158 | 240 | 166 | 163 | 167 | 164 | 182 | 152 | 170 | 207 | 280 | 145 | 180 |
|        |        | 401 | 433 | 495 | 371 | 340 | 331 | 326 | 253 | 395 | 282 | 285 | 418 | 227 | 273 |
|        | Mean   | 342 | 242 | 277 | 305 |     | 293 | 307 | 212 | 209 | 282 | 268 | 252 | 195 | 213 |
| WMO-6  | 90% CI | 238 | 182 | 214 | 240 |     | 208 | 229 | 166 | 163 | 224 | 237 | 227 | 164 | 175 |
|        |        | 491 | 322 | 358 | 389 |     | 412 | 411 | 271 | 267 | 355 | 302 | 281 | 232 | 260 |
| WMO-7  | Mean   | 285 | 216 | 218 | 206 |     |     |     |     |     |     |     |     |     |     |
|        | 90% CI | 188 | 140 | 207 | 175 |     |     |     |     |     |     |     |     |     |     |
|        |        | 431 | 333 | 230 | 242 |     |     |     |     |     |     |     |     |     |     |
| WMO-8  | Mean   | 203 | 210 | 242 | 212 |     |     |     |     |     |     |     |     | 138 | 196 |
|        | 90% CI | 153 | 159 | 185 | 175 |     |     |     |     |     |     |     |     | 120 | 149 |
|        |        | 270 | 278 | 317 | 256 |     |     |     |     |     |     |     |     | 158 | 257 |
| WMO-9  | Mean   | 200 | 237 | 237 | 287 | 240 |     |     |     |     |     |     |     |     | 185 |
|        | 90% CI | 129 | 167 | 209 | 244 | 180 |     |     |     |     |     |     |     |     |     |
|        |        | 310 | 337 | 268 | 336 | 321 |     |     |     |     |     |     |     |     |     |
| WMO-10 | Mean   | 213 | 241 | 308 | 322 |     | 289 | 281 | 263 | 200 | 234 | 241 | 259 | 212 | 217 |
|        | 90% CI | 175 | 198 | 221 | 251 |     | 246 | 255 | 236 | 178 | 214 | 220 | 248 | 187 | 197 |
|        |        | 260 | 295 | 431 | 414 |     | 340 | 309 | 293 | 225 | 257 | 265 | 271 | 240 | 238 |
| WMO-12 | Mean   | 206 | 185 | 206 | 196 |     |     |     |     |     | 208 | 282 | 291 | 277 | 248 |
|        | 90% CI | 153 | 123 | 171 | 159 |     |     |     |     |     | 138 | 232 | 190 | 212 | 211 |
|        |        | 276 | 277 | 248 | 243 |     |     |     |     |     | 315 | 344 | 445 | 362 | 293 |

### Total Nitrogen

| Site   | 9      |       |       |       |       |       |       | Total | Nitrogen | (µg/L) |       |       |       |       |       |       |
|--------|--------|-------|-------|-------|-------|-------|-------|-------|----------|--------|-------|-------|-------|-------|-------|-------|
|        |        | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007     | 2008   | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  |
| CM-13  | Mean   | 442   | 410   | 468   | 456   | 425   | 365   | 424   | 435      | 446    | 554   | 672   | 571   | 750   | 719   | 534   |
|        | 90% CI | 403   | 371   | 377   | 396   | 387   | 329   | 384   | 367      | 418    | 504   | 527   | 510   | 633   | 553   | 453   |
|        |        | 485   | 452   | 581   | 524   | 467   | 405   | 468   | 516      | 476    | 609   | 857   | 639   | 887   | 936   | 630   |
| CM-14  | Mean   | 1,176 | 706   | 1,359 | 1,144 | 1,000 | 1,113 |       |          |        |       |       |       |       |       |       |
|        | 90% CI | 980   | 346   | 1,139 | 961   | 723   | 723   |       |          |        |       |       |       |       |       |       |
|        |        | 1,412 | 1,438 | 1,621 | 1,362 | 1,382 | 1,714 |       |          |        |       |       |       |       |       |       |
| PBA-1  | Mean   | 528   | 503   | 454   | 405   | 340   | 273   | 419   |          |        |       |       |       |       | 364   | 519   |
|        | 90% CI | 440   | 363   | 366   | 319   | 264   | 234   | 328   |          |        |       |       |       |       | 268   | 427   |
|        |        | 633   | 695   | 563   | 514   | 439   | 318   | 535   |          |        |       |       |       |       | 493   | 630   |
| PBA-2  | Mean   | 512   | 445   | 500   | 518   | 450   |       |       |          |        |       |       |       |       |       |       |
|        | 90% CI | 406   | 381   | 315   | 401   | 309   |       |       |          |        |       |       |       |       |       |       |
|        |        | 646   | 519   | 793   | 669   | 657   |       |       |          |        |       |       |       |       |       |       |
| PBA-3  | Mean   | 502   | 761   | 686   | 879   | 854   | 724   | 820   | 739      | 658    | 556   | 641   | 710   | 634   | 621   | 617   |
|        | 90% CI | 420   | 634   | 583   | 696   | 683   | 614   | 702   | 580      | 561    | 441   | 580   | 642   | 512   | 511   | 525   |
|        |        | 601   | 914   | 808   | 1,111 | 1,067 | 854   | 959   | 943      | 771    | 702   | 710   | 785   | 785   | 754   | 726   |
| PBA-4  | Mean   | 772   | 963   | 1,128 | 660   | 642   | 678   | 574   | 727      | 514    | 560   | 700   | 702   | 955   | 607   | 548   |
|        | 90% CI | 585   | 786   | 1,052 | 548   | 536   | 579   | 492   | 561      | 449    | 425   | 563   | 661   | 860   | 489   | 490   |
|        |        | 1,021 | 1,180 | 1,209 | 795   | 769   | 795   | 670   | 943      | 589    | 738   | 869   | 747   | 1,060 | 754   | 611   |
| PBA-5  | Mean   | 556   | 623   | 880   | 695   | 610   | 558   | 1,540 | 1,196    | 1,139  | 620   | 869   | 1,005 | 578   | 809   | 591   |
|        | 90% CI | 480   | 521   | 412   | 508   | 391   | 462   | 900   | 547      | 388    | 247   | 655   | 727   | 483   | 664   | 435   |
|        |        | 645   | 745   | 1,881 | 950   | 950   | 674   | 2,635 | 2,615    | 3,341  | 1,559 | 1,155 | 1,389 | 693   | 986   | 802   |
| PBA-5A | Mean   |       |       | 1,318 | 1,297 | 1,277 | 1,225 | 1,292 | 1,308    | 1,472  | 1,231 | 1,433 | 1,323 | 1,301 | 1,037 | 1,030 |
|        | 90% CI |       |       | 638   | 998   | 991   | 867   | 886   | 868      | 1,361  | 1,135 | 1,174 | 889   | 1,040 | 991   | 780   |
|        |        |       |       | 2,724 | 1,684 | 1,646 | 1,730 | 1,884 | 1,970    | 1,593  | 1,336 | 1,748 | 1,969 | 1,627 | 1,085 | 1,361 |
| PBA-6  | Mean   | 576   | 578   | 539   | 514   | 474   | 408   |       |          |        |       | 433   | 587   | 416   | 399   | 344   |
|        | 90% CI | 430   | 498   | 438   | 459   | 366   | 375   |       |          |        |       | 404   | 450   | 356   | 359   | 325   |
|        |        | 773   | 672   | 663   | 575   | 613   | 444   |       |          |        |       | 464   | 765   | 486   | 444   | 365   |
| PBA-7  | Mean   | 707   | 399   | 381   | 413   | 452   | 429   |       |          |        |       |       |       |       |       |       |
|        | 90% CI | 596   | 366   | 329   | 380   | 376   | 370   |       |          |        |       |       |       |       |       |       |
|        |        | 839   | 436   | 441   | 449   | 544   | 499   |       |          |        |       |       |       |       |       |       |
| PBA-8  | Mean   | 578   | 410   | 446   | 498   | 388   | 381   | 499   | 436      | 394    | 349   | 356   | 733   | 798   | 942   | 359   |
|        | 90% CI | 461   | 364   | 384   | 438   | 346   | 337   | 440   | 309      | 362    | 292   | 327   | 618   | 680   | 860   | 316   |
|        |        | 725   | 461   | 518   | 565   | 435   | 431   | 565   | 615      | 429    | 417   | 387   | 871   | 936   | 1,032 | 409   |
| PBA-9  | Mean   | 742   | 661   | 811   | 882   | 555   | 513   | 753   | 558      | 546    | 500   | 530   | 543   | 615   | 584   | 588   |
|        | 90% CI | 628   | 561   | 665   | 759   | 507   | 470   | 672   | 491      | 506    | 423   | 485   | 491   | 557   | 521   | 523   |

|         |        | 876 | 779   | 989   | 1,024 | 607 | 561   | 844   | 634   | 589 | 590 | 579   | 602 | 679   | 656   | 661 |
|---------|--------|-----|-------|-------|-------|-----|-------|-------|-------|-----|-----|-------|-----|-------|-------|-----|
| PBA-10  | Mean   | 413 | 502   | 577   | 767   | 604 | 505   | 645   | 449   | 570 | 450 | 549   | 586 | 614   | 627   | 762 |
|         | 90% CI | 349 | 453   | 480   | 622   | 536 | 461   | 588   | 334   | 511 | 400 | 484   | 498 | 528   | 538   | 679 |
|         |        | 488 | 556   | 692   | 946   | 680 | 553   | 707   | 603   | 636 | 507 | 622   | 689 | 714   | 730   | 855 |
| PBA-11  | Mean   | 524 | 1,081 | 694   | 884   | 773 | 634   | 789   | 596   | 457 | 465 | 534   | 529 | 564   | 677   | 566 |
|         | 90% CI | 452 | 720   | 588   | 650   | 678 | 546   | 533   | 456   | 396 | 364 | 459   | 443 | 451   | 470   | 453 |
|         |        | 606 | 1,621 | 818   | 1,201 | 881 | 736   | 1,167 | 780   | 528 | 594 | 621   | 631 | 707   | 974   | 707 |
| PBA-12  | Mean   | 718 | 664   | 770   | 1,081 | 787 | 517   | 547   | 850   | 439 | 436 | 463   | 615 | 553   | 447   | 451 |
|         | 90% CI | 606 | 552   | 603   | 939   | 657 | 456   | 470   | 659   | 415 | 399 | 430   | 471 | 486   | 403   | 414 |
|         |        | 852 | 800   | 982   | 1,245 | 941 | 587   | 637   | 1,097 | 465 | 476 | 497   | 804 | 631   | 495   | 491 |
| PBA-13  | Mean   | 588 | 581   | 619   | 601   | 528 | 535   | 591   | 524   | 533 | 484 | 619   | 587 | 683   | 651   | 498 |
|         | 90% CI | 501 | 466   | 521   | 547   | 471 | 475   | 526   | 433   | 430 | 401 | 519   | 503 | 521   | 536   | 406 |
|         |        | 690 | 725   | 736   | 661   | 591 | 603   | 663   | 634   | 662 | 584 | 738   | 685 | 895   | 789   | 612 |
| PBA-14  | Mean   | 669 | 716   | 929   | 768   | 731 | 741   | 962   |       |     |     | 819   | 754 | 781   | 976   | 688 |
|         | 90% CI | 579 | 660   | 762   | 683   | 669 | 681   | 777   |       |     |     | 731   | 653 | 670   | 854   | 617 |
|         |        | 772 | 778   | 1,133 | 864   | 800 | 806   | 1,192 |       |     |     | 917   | 871 | 909   | 1,116 | 768 |
| PBA-15  | Mean   | 705 | 647   | 1,059 | 903   | 807 | 732   | 839   | 883   | 871 | 650 | 613   | 815 | 977   | 566   | 663 |
|         | 90% CI | 556 | 617   | 858   | 775   | 667 | 663   | 709   | 707   | 775 | 585 | 587   | 724 | 858   | 534   | 589 |
|         |        | 895 | 679   | 1,307 | 1,053 | 975 | 809   | 993   | 1,102 | 980 | 722 | 640   | 917 | 1,113 | 599   | 747 |
| PBA-16  | Mean   | 684 | 838   | 796   | 914   | 661 | 761   | 731   |       |     |     | 915   | 690 | 944   | 911   | 858 |
|         | 90% CI | 497 | 560   | 658   | 673   | 608 | 669   | 663   |       |     |     | 818   | 626 | 791   | 811   | 783 |
|         |        | 941 | 1,253 | 963   | 1,241 | 718 | 865   | 807   |       |     |     | 1,023 | 761 | 1,127 | 1,024 | 940 |
| PBA-17A | Mean   |     |       |       |       |     |       |       |       |     |     | 380   | 331 | 348   | 323   | 305 |
|         | 90% CI |     |       |       |       |     |       |       |       |     |     | 340   | 304 | 287   | 287   | 284 |
|         |        |     |       |       |       |     |       |       |       |     |     | 425   | 361 | 421   | 362   | 327 |
| PBA-18  | Mean   |     |       | 540   | 568   | 452 | 319   |       |       |     |     |       |     |       |       |     |
|         | 90% CI |     |       | 422   | 470   | 385 | 279   |       |       |     |     |       |     |       |       |     |
|         |        |     |       | 692   | 685   | 531 | 364   |       |       |     |     |       |     |       |       |     |
| PBA-19  | Mean   |     |       | 962   | 640   | 614 | 881   |       |       |     |     |       |     |       | 321   | 605 |
|         | 90% CI |     |       | 621   | 477   | 557 | 666   |       |       |     |     |       |     |       | 262   | 433 |
|         |        |     |       | 1,490 | 861   | 676 | 1,164 |       |       |     |     |       |     |       | 394   | 846 |
| PBA-20  | Mean   |     |       | 599   | 566   | 525 | 604   |       |       |     |     |       |     |       | 420   | 676 |
|         | 90% CI |     |       | 476   | 433   | 416 | 421   |       |       |     |     |       |     |       | 225   | 581 |
|         |        |     |       | 752   | 739   | 664 | 865   |       |       |     |     |       |     |       | 785   | 786 |
| PBA-21  | Mean   |     |       | 573   | 614   | 568 | 480   |       |       |     |     |       |     |       | 557   | 456 |
|         | 90% CI |     |       | 415   | 526   | 480 | 399   |       |       |     |     |       |     |       | 486   | 392 |
|         |        |     |       | 792   | 716   | 673 | 579   |       |       |     |     |       |     |       | 638   | 529 |
| WMO-2   | Mean   |     | 483   | 775   | 568   | 515 |       |       |       |     |     |       |     |       |       |     |

|        | 90% CI | 389   | 563   | 481   | 408   |       |       |       |     |     |       |       |       |     |     |
|--------|--------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-------|-------|-------|-----|-----|
|        |        | 599   | 1,067 | 670   | 650   |       |       |       |     |     |       |       |       |     |     |
| WMO-3  | Mean   | 613   | 823   | 675   | 680   |       | 914   | 858   | 561 | 407 | 600   | 549   | 655   | 557 | 585 |
|        | 90% CI | 484   | 607   | 575   | 543   |       | 751   | 692   | 442 | 291 | 505   | 456   | 514   | 514 | 510 |
|        |        | 776   | 1,115 | 793   | 851   |       | 1,111 | 1,063 | 711 | 569 | 714   | 661   | 835   | 604 | 670 |
| WMO-4  | Mean   | 695   | 847   | 780   | 692   |       |       |       |     |     |       |       |       |     |     |
|        | 90% CI | 476   | 651   | 618   | 524   |       |       |       |     |     |       |       |       |     |     |
|        |        | 1,015 | 1,101 | 984   | 913   |       |       |       |     |     |       |       |       |     |     |
| WMO-5  | Mean   | 787   | 799   | 947   | 825   | 630   | 786   | 770   | 701 | 684 | 690   | 727   | 754   | 767 | 804 |
|        | 90% CI | 515   | 575   | 745   | 554   | 536   | 737   | 683   | 626 | 582 | 620   | 665   | 622   | 654 | 674 |
|        |        | 1,202 | 1,110 | 1,203 | 1,228 | 740   | 837   | 868   | 785 | 803 | 768   | 795   | 914   | 898 | 959 |
| WMO-6  | Mean   | 1,016 | 848   | 837   | 747   |       | 972   | 1,109 | 732 | 608 | 889   | 826   | 538   | 650 | 615 |
|        | 90% CI | 672   | 678   | 609   | 558   |       | 709   | 1,042 | 678 | 529 | 697   | 639   | 460   | 549 | 550 |
|        |        | 1,534 | 1,062 | 1,150 | 998   |       | 1,333 | 1,179 | 791 | 698 | 1,133 | 1,067 | 630   | 771 | 688 |
| WMO-7  | Mean   | 973   | 764   | 748   | 583   |       |       |       |     |     |       |       |       |     |     |
|        | 90% CI | 647   | 584   | 564   | 529   |       |       |       |     |     |       |       |       |     |     |
|        |        | 1,463 | 999   | 992   | 642   |       |       |       |     |     |       |       |       |     |     |
| WMO-8  | Mean   | 821   | 978   | 794   | 659   |       |       |       |     |     |       |       |       | 679 | 633 |
|        | 90% CI | 545   | 799   | 622   | 479   |       |       |       |     |     |       |       |       | 490 | 515 |
|        |        | 1,236 | 1,198 | 1,014 | 906   |       |       |       |     |     |       |       |       | 940 | 777 |
| WMO-9  | Mean   | 841   | 865   | 785   | 907   | 756   |       |       |     |     |       |       |       |     | 675 |
|        | 90% CI | 668   | 681   | 658   | 734   | 517   |       |       |     |     |       |       |       |     |     |
|        |        | 1,060 | 1,099 | 937   | 1,120 | 1,106 |       |       |     |     |       |       |       |     |     |
| WMO-10 | Mean   | 907   | 878   | 1,419 | 970   |       | 787   | 635   | 666 | 518 | 622   | 610   | 559   | 617 | 563 |
|        | 90% CI | 561   | 764   | 906   | 737   |       | 663   | 595   | 627 | 483 | 595   | 572   | 496   | 573 | 524 |
|        |        | 1,468 | 1,010 | 2,222 | 1,278 |       | 935   | 677   | 707 | 555 | 651   | 651   | 630   | 664 | 606 |
| WMO-12 | Mean   | 665   | 652   | 596   | 575   |       |       |       |     |     | 707   | 883   | 730   | 875 | 753 |
|        | 90% CI | 470   | 459   | 549   | 431   |       |       |       |     |     | 461   | 741   | 521   | 785 | 645 |
|        |        | 943   | 925   | 648   | 766   |       |       |       |     |     | 1,083 | 1,054 | 1,023 | 976 | 878 |

#### **Phosphate**

| Site   | 9      |      |      |      |      |      |      | Pho  | sphate (µ | lg/L) |      |      |      |      |      |      |
|--------|--------|------|------|------|------|------|------|------|-----------|-------|------|------|------|------|------|------|
|        |        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007      | 2008  | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| CM-13  | Mean   | 25   | 30   | 23   | 24   | 25   | 30   | 48   | 34        | 31    | 30   | 37   | 30   | 46   | 41   | 40   |
|        | 90% CI | 19   | 22   | 18   | 20   | 18   | 21   | 37   | 31        | 24    | 24   | 32   | 23   | 39   | 39   | 35   |
|        |        | 33   | 40   | 29   | 29   | 36   | 44   | 61   | 38        | 38    | 39   | 43   | 37   | 53   | 44   | 45   |
| CM-14  | Mean   | 40   | 67   | 38   | 41   | 42   | 46   |      |           |       |      |      |      |      |      |      |
|        | 90% CI | 30   | 17   | 29   | 32   | 26   | 24   |      |           |       |      |      |      |      |      |      |
|        |        | 55   | 262  | 50   | 52   | 69   | 86   |      |           |       |      |      |      |      |      |      |
| PBA-1  | Mean   | 17   | 15   | 13   | 15   | 14   | 9    | 17   |           |       |      |      |      |      | 18   | 25   |
|        | 90% CI | 14   | 11   | 10   | 11   | 11   | 7    | 13   |           |       |      |      |      |      | 13   | 20   |
|        |        | 20   | 20   | 17   | 21   | 18   | 13   | 22   |           |       |      |      |      |      | 23   | 31   |
| PBA-2  | Mean   | 24   | 27   | 24   | 24   | 26   |      |      |           |       |      |      |      |      |      |      |
|        | 90% CI | 17   | 17   | 15   | 18   | 14   |      |      |           |       |      |      |      |      |      |      |
|        |        | 34   | 43   | 39   | 34   | 46   |      |      |           |       |      |      |      |      |      |      |
| PBA-3  | Mean   | 32   | 38   | 25   | 29   | 24   | 30   | 44   | 32        | 34    | 27   | 39   | 27   | 44   | 40   | 39   |
|        | 90% CI | 24   | 31   | 19   | 21   | 16   | 19   | 27   | 24        | 27    | 20   | 35   | 21   | 38   | 35   | 34   |
|        |        | 43   | 47   | 34   | 40   | 38   | 47   | 72   | 42        | 41    | 37   | 43   | 33   | 50   | 46   | 45   |
| PBA-4  | Mean   | 25   | 33   | 21   | 25   | 27   | 30   | 38   | 34        | 25    | 22   | 33   | 28   | 37   | 37   | 30   |
|        | 90% CI | 19   | 24   | 15   | 19   | 19   | 23   | 26   | 29        | 23    | 19   | 31   | 22   | 31   | 35   | 25   |
|        |        | 32   | 45   | 28   | 33   | 37   | 39   | 55   | 39        | 29    | 26   | 35   | 35   | 42   | 39   | 35   |
| PBA-5  | Mean   | 30   | 17   | 30   | 16   | 27   | 27   | 62   | 38        | 27    | 28   | 51   | 33   | 53   | 12   | 17   |
|        | 90% CI | 24   | 8    | 16   | 4    | 14   | 15   | 40   | 19        | 3     | 21   | 38   | 22   | 45   | 5    | 6    |
|        |        | 39   | 39   | 55   | 71   | 54   | 49   | 98   | 77        | 226   | 37   | 68   | 51   | 62   | 27   | 45   |
| PBA-5A | Mean   |      |      | 41   | 29   | 41   | 15   | 20   | 22        | 26    | 57   | 32   | 51   | 35   | 14   | 18   |
|        | 90% CI |      |      | 20   | 15   | 27   | 7    | 9    | 12        | 14    | 45   | 21   | 37   | 14   | 5    | 7    |
|        |        |      |      | 86   | 55   | 62   | 32   | 45   | 40        | 48    | 73   | 49   | 68   | 84   | 39   | 43   |
| PBA-6  | Mean   | 30   | 40   | 26   | 31   | 27   | 20   |      |           |       |      | 18   | 21   | 24   | 27   | 15   |
|        | 90% CI | 22   | 25   | 22   | 24   | 23   | 13   |      |           |       |      | 14   | 17   | 19   | 23   | 13   |
|        |        | 40   | 64   | 31   | 42   | 31   | 33   |      |           |       |      | 24   | 27   | 31   | 31   | 18   |
| PBA-7  | Mean   | 31   | 32   | 25   | 31   | 27   | 25   |      |           |       |      |      |      |      |      |      |
|        | 90% CI | 24   | 23   | 22   | 26   | 23   | 16   |      |           |       |      |      |      |      |      |      |
|        |        | 40   | 46   | 28   | 38   | 32   | 38   |      |           |       |      |      |      |      |      |      |
| PBA-8  | Mean   | 31   | 31   | 23   | 30   | 26   | 28   | 48   | 24        | 17    | 20   | 23   | 22   | 26   | 28   | 14   |
|        | 90% CI | 26   | 21   | 18   | 24   | 20   | 21   | 40   | 20        | 13    | 17   | 21   | 19   | 22   | 27   | 12   |
|        |        | 36   | 47   | 28   | 36   | 34   | 36   | 59   | 28        | 21    | 22   | 25   | 26   | 30   | 30   | 17   |
| PBA-9  | Mean   | 26   | 34   | 27   | 29   | 29   | 20   | 46   | 28        | 23    | 21   | 27   | 27   | 37   | 30   | 19   |
|        | 90% CI | 21   | 26   | 22   | 22   | 24   | 13   | 37   | 23        | 20    | 17   | 23   | 20   | 29   | 27   | 14   |

|         |        | 33  | 45  | 33  | 39  | 35  | 29  | 57  | 34  | 26  | 27 | 32  | 37 | 46  | 35  | 27  |
|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|-----|-----|
| PBA-10  | Mean   | 31  | 42  | 36  | 35  | 35  | 34  | 51  | 31  | 24  | 25 | 27  | 27 | 42  | 37  | 31  |
|         | 90% CI | 25  | 32  | 32  | 29  | 31  | 26  | 41  | 29  | 22  | 21 | 21  | 21 | 37  | 33  | 24  |
|         |        | 37  | 54  | 41  | 44  | 41  | 44  | 64  | 34  | 26  | 30 | 34  | 35 | 49  | 40  | 40  |
| PBA-11  | Mean   | 49  | 61  | 57  | 76  | 59  | 68  | 109 | 63  | 44  | 44 | 51  | 56 | 74  | 83  | 62  |
|         | 90% CI | 37  | 44  | 50  | 49  | 43  | 53  | 59  | 53  | 38  | 36 | 45  | 43 | 63  | 51  | 51  |
|         |        | 66  | 85  | 65  | 116 | 82  | 86  | 202 | 76  | 51  | 53 | 58  | 74 | 87  | 135 | 75  |
| PBA-12  | Mean   | 53  | 68  | 55  | 53  | 50  | 57  | 73  | 51  | 38  | 36 | 43  | 42 | 64  | 64  | 53  |
|         | 90% CI | 40  | 50  | 47  | 39  | 33  | 44  | 53  | 47  | 32  | 30 | 36  | 34 | 57  | 54  | 49  |
|         |        | 71  | 93  | 65  | 72  | 76  | 74  | 101 | 57  | 46  | 44 | 50  | 50 | 71  | 76  | 58  |
| PBA-13  | Mean   | 51  | 79  | 66  | 67  | 74  | 65  | 93  | 69  | 55  | 50 | 69  | 65 | 79  | 84  | 68  |
|         | 90% CI | 36  | 60  | 54  | 46  | 59  | 47  | 75  | 67  | 48  | 43 | 59  | 60 | 73  | 69  | 65  |
|         |        | 71  | 103 | 79  | 98  | 92  | 89  | 114 | 70  | 62  | 59 | 80  | 72 | 85  | 102 | 70  |
| PBA-14  | Mean   | 63  | 108 | 83  | 91  | 87  | 90  | 126 |     |     |    | 105 | 78 | 88  | 95  | 90  |
|         | 90% CI | 48  | 82  | 65  | 66  | 65  | 68  | 96  |     |     |    | 89  | 68 | 81  | 77  | 84  |
|         |        | 83  | 143 | 106 | 126 | 116 | 118 | 166 |     |     |    | 124 | 90 | 97  | 117 | 96  |
| PBA-15  | Mean   | 61  | 89  | 100 | 89  | 98  | 93  | 132 | 107 | 98  | 77 | 97  | 82 | 114 | 109 | 100 |
|         | 90% CI | 46  | 66  | 79  | 63  | 72  | 73  | 108 | 94  | 87  | 61 | 88  | 72 | 104 | 94  | 97  |
|         |        | 81  | 120 | 127 | 127 | 135 | 119 | 162 | 122 | 110 | 97 | 107 | 93 | 125 | 126 | 104 |
| PBA-16  | Mean   | 84  | 182 | 104 | 181 | 90  | 111 | 131 |     |     |    | 120 | 81 | 108 | 122 | 100 |
|         | 90% CI | 43  | 79  | 73  | 98  | 73  | 74  | 95  |     |     |    | 90  | 69 | 95  | 106 | 93  |
|         |        | 163 | 417 | 148 | 333 | 112 | 165 | 180 |     |     |    | 160 | 94 | 123 | 141 | 106 |
| PBA-17A | Mean   |     |     |     |     |     |     |     |     |     |    | 11  | 13 | 9   | 15  | 10  |
|         | 90% CI |     |     |     |     |     |     |     |     |     |    | 8   | 10 | 7   | 8   | 8   |
|         |        |     |     |     |     |     |     |     |     |     |    | 15  | 17 | 12  | 27  | 12  |
| PBA-18  | Mean   |     |     | 27  | 22  | 20  | 23  |     |     |     |    |     |    |     |     |     |
|         | 90% CI |     |     | 19  | 17  | 14  | 18  |     |     |     |    |     |    |     |     |     |
|         |        |     |     | 38  | 29  | 28  | 29  |     |     |     |    |     |    |     |     |     |
| PBA-19  | Mean   |     |     | 22  | 24  | 19  | 18  |     |     |     |    |     |    |     | 24  | 13  |
|         | 90% CI |     |     | 19  | 17  | 13  | 12  |     |     |     |    |     |    |     | 18  | 9   |
|         |        |     |     | 26  | 35  | 30  | 29  |     |     |     |    |     |    |     | 33  | 20  |
| PBA-20  | Mean   |     |     | 27  | 27  | 24  | 27  |     |     |     |    |     |    |     | 27  | 10  |
|         | 90% CI |     |     | 23  | 21  | 18  | 20  |     |     |     |    |     |    |     | 25  | 8   |
|         |        |     |     | 32  | 35  | 33  | 36  |     |     |     |    |     |    |     | 29  | 13  |
| PBA-21  | Mean   |     |     | 39  | 34  | 41  | 40  |     |     |     |    |     |    |     | 40  | 30  |
|         | 90% CI |     |     | 35  | 24  | 35  | 30  |     |     |     |    |     |    |     | 33  | 24  |
|         |        |     |     | 43  | 50  | 48  | 53  |     |     |     |    |     |    |     | 49  | 37  |
| WMO-2   | Mean   |     | 26  | 29  | 33  | 26  |     |     |     |     |    |     |    |     |     |     |

|        | 90% CI | 21     | 25  | 27  | 19  |     |     |     |     |     |     |     |     |     |     |
|--------|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|        |        | <br>34 | 35  | 41  | 35  |     |     |     |     |     |     |     |     |     |     |
| WMO-3  | Mean   | 69     | 85  | 62  | 43  |     | 99  | 69  | 61  | 49  | 59  | 59  | 77  | 84  | 66  |
|        | 90% CI | 54     | 73  | 39  | 24  |     | 76  | 53  | 48  | 29  | 49  | 52  | 66  | 66  | 65  |
|        |        | 89     | 99  | 97  | 78  |     | 128 | 89  | 78  | 81  | 70  | 68  | 91  | 106 | 68  |
| WMO-4  | Mean   | 97     | 86  | 102 | 96  |     |     |     |     |     |     |     |     |     |     |
|        | 90% CI | 73     | 62  | 54  | 58  |     |     |     |     |     |     |     |     |     |     |
|        |        | 130    | 120 | 193 | 157 |     |     |     |     |     |     |     |     |     |     |
| WMO-5  | Mean   | 118    | 112 | 138 | 119 | 126 | 167 | 168 | 167 | 162 | 131 | 145 | 187 | 138 | 142 |
|        | 90% CI | 79     | 87  | 75  | 79  | 86  | 113 | 126 | 140 | 124 | 107 | 107 | 159 | 123 | 124 |
|        |        | 176    | 144 | 256 | 178 | 184 | 246 | 223 | 200 | 211 | 162 | 198 | 219 | 155 | 162 |
| WMO-6  | Mean   | 89     | 77  | 89  | 84  |     | 123 | 102 | 81  | 75  | 95  | 77  | 98  | 98  | 98  |
|        | 90% CI | 65     | 53  | 48  | 50  |     | 89  | 89  | 62  | 50  | 73  | 55  | 88  | 71  | 94  |
|        |        | 121    | 110 | 165 | 142 |     | 172 | 117 | 106 | 111 | 122 | 107 | 109 | 135 | 102 |
| WMO-7  | Mean   | 73     | 79  | 88  | 74  |     |     |     |     |     |     |     |     |     |     |
|        | 90% CI | 38     | 49  | 52  | 42  |     |     |     |     |     |     |     |     |     |     |
|        |        | 139    | 125 | 147 | 129 |     |     |     |     |     |     |     |     |     |     |
| WMO-8  | Mean   | 79     | 72  | 74  | 77  |     |     |     |     |     |     |     |     | 77  | 85  |
|        | 90% CI | <br>50 | 48  | 39  | 45  |     |     |     |     |     |     |     |     | 57  | 75  |
|        |        | 127    | 110 | 141 | 132 |     |     |     |     |     |     |     |     | 103 | 95  |
| WMO-9  | Mean   | 69     | 76  | 81  | 86  | 85  |     |     |     |     |     |     |     |     | 83  |
|        | 90% CI | <br>33 | 50  | 43  | 55  | 50  |     |     |     |     |     |     |     |     |     |
|        |        | 148    | 116 | 153 | 136 | 145 |     |     |     |     |     |     |     |     |     |
| WMO-10 | Mean   | 64     | 78  | 91  | 87  |     | 132 | 103 | 93  | 66  | 90  | 81  | 105 | 107 | 101 |
|        | 90% CI | <br>30 | 60  | 49  | 58  |     | 112 | 94  | 82  | 51  | 80  | 69  | 94  | 93  | 96  |
|        |        | 137    | 102 | 167 | 130 |     | 155 | 113 | 106 | 87  | 101 | 95  | 116 | 124 | 106 |
| WMO-12 | Mean   | 51     | 48  | 43  | 53  |     |     |     |     |     | 42  | 35  | 54  | 43  | 46  |
|        | 90% CI | 41     | 39  | 32  | 40  |     |     |     |     |     | 37  | 27  | 47  | 37  | 40  |
|        |        | 64     | 58  | 56  | 70  |     |     |     |     |     | 47  | 45  | 61  | 50  | 53  |

### **Total Phytopigments**

| Site   | 9      |      |      |      |      |      | -    | Total Phy | topigmei | nts (µg/L) |      |      |      |      |      |      |
|--------|--------|------|------|------|------|------|------|-----------|----------|------------|------|------|------|------|------|------|
|        |        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006      | 2007     | 2008       | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| CM-13  | Mean   | 6.0  | 5.3  | 6.5  | 4.0  | 6.9  | 5.4  | 4.5       | 5.4      | 3.7        | 5.2  | 3.3  | 3.6  | 3.7  | 2.1  | 1.9  |
|        | 90% CI | 5.1  | 4.9  | 5.1  | 3.2  | 5.3  | 4.2  | 3.6       | 4.7      | 3.0        | 3.3  | 2.7  | 3.1  | 2.9  | 1.6  | 1.7  |
|        |        | 7.2  | 5.7  | 8.2  | 4.9  | 9.1  | 7.0  | 5.6       | 6.2      | 4.5        | 8.1  | 4.0  | 4.2  | 4.7  | 2.6  | 2.1  |
| CM-14  | Mean   | 9.6  | 5.4  | 6.1  | 4.7  | 5.9  | 5.7  |           |          |            |      |      |      |      |      |      |
|        | 90% CI | 6.1  | 4.3  | 4.8  | 3.5  | 4.5  | 3.2  |           |          |            |      |      |      |      |      |      |
|        |        | 14.9 | 6.9  | 7.7  | 6.2  | 7.7  | 10.0 |           |          |            |      |      |      |      |      |      |
| PBA-1  | Mean   | 5.4  | 3.9  | 4.4  | 2.1  | 3.6  | 3.1  | 1.6       |          |            |      |      |      |      | 1.2  | 1.8  |
|        | 90% CI | 4.6  | 3.4  | 3.8  | 1.5  | 2.5  | 2.6  | 1.2       |          |            |      |      |      |      | 0.9  | 1.5  |
|        |        | 6.4  | 4.4  | 5.1  | 3.0  | 5.1  | 3.7  | 2.2       |          |            |      |      |      |      | 1.5  | 2.0  |
| PBA-2  | Mean   | 5.5  | 4.2  | 5.3  | 2.8  | 4.1  |      |           |          |            |      |      |      |      |      |      |
|        | 90% CI | 4.5  | 3.4  | 4.3  | 1.9  | 3.1  |      |           |          |            |      |      |      |      |      |      |
|        |        | 6.6  | 5.2  | 6.5  | 4.2  | 5.6  |      |           |          |            |      |      |      |      |      |      |
| PBA-3  | Mean   | 5.8  | 7.0  | 9.0  | 8.4  | 12.4 | 9.0  | 7.3       | 9.2      | 5.3        | 7.6  | 4.6  | 5.6  | 6.8  | 4.0  | 2.8  |
|        | 90% CI | 4.7  | 5.7  | 7.2  | 7.1  | 9.3  | 7.0  | 5.4       | 7.2      | 4.5        | 5.0  | 3.6  | 4.5  | 5.2  | 3.0  | 2.3  |
|        |        | 7.1  | 8.6  | 11.4 | 9.8  | 16.5 | 11.4 | 10.0      | 11.8     | 6.3        | 11.4 | 5.8  | 7.0  | 8.8  | 5.2  | 3.4  |
| PBA-4  | Mean   | 5.7  | 5.5  | 8.2  | 5.1  | 6.1  | 5.3  | 5.7       | 5.4      | 3.2        | 5.4  | 2.5  | 4.1  | 3.9  | 2.8  | 2.8  |
|        | 90% CI | 5.0  | 4.4  | 6.6  | 4.1  | 5.1  | 4.4  | 4.5       | 4.4      | 2.5        | 2.7  | 2.0  | 3.5  | 3.3  | 2.4  | 2.3  |
|        |        | 6.5  | 6.8  | 10.2 | 6.4  | 7.3  | 6.3  | 7.1       | 6.7      | 4.2        | 10.6 | 3.2  | 4.7  | 4.5  | 3.2  | 3.4  |
| PBA-5  | Mean   | 8.8  | 9.8  | 7.3  | 8.0  | 9.1  | 6.6  | 7.7       | 10.6     | 22.1       | 14.1 | 4.5  | 10.4 | 5.9  | 9.4  | 4.5  |
|        | 90% CI | 5.9  | 5.9  | 4.5  | 4.2  | 6.9  | 3.9  | 2.8       | 2.2      | 12.7       | 4.7  | 3.1  | 6.2  | 3.3  | 5.9  | 3.1  |
|        |        | 13.1 | 16.3 | 11.9 | 15.1 | 11.8 | 11.2 | 21.0      | 52.3     | 38.5       | 42.1 | 6.4  | 17.6 | 10.7 | 14.8 | 6.5  |
| PBA-5A | Mean   |      |      | 20.5 | 9.2  | 11.5 | 9.1  | 11.6      | 30.0     | 18.7       | 16.6 | 16.0 | 17.8 | 46.8 | 15.7 | 10.3 |
|        | 90% CI |      |      | 12.1 | 4.9  | 5.2  | 5.3  | 5.4       | 8.1      | 13.7       | 8.2  | 5.8  | 7.5  | 25.4 | 11.8 | 8.9  |
|        |        |      |      | 34.7 | 17.1 | 25.4 | 15.7 | 24.6      | 111.8    | 25.6       | 33.8 | 44.3 | 42.2 | 86.3 | 20.8 | 11.9 |
| PBA-6  | Mean   | 8.5  | 7.7  | 8.5  | 6.0  | 7.4  | 8.5  |           |          |            |      | 4.8  | 8.1  | 4.2  | 4.6  | 3.6  |
|        | 90% CI | 5.7  | 5.0  | 7.2  | 4.5  | 5.6  | 7.3  |           |          |            |      | 3.9  | 6.3  | 3.5  | 4.1  | 3.0  |
|        |        | 12.6 | 12.0 | 10.0 | 8.1  | 9.8  | 10.0 |           |          |            |      | 5.9  | 10.4 | 5.1  | 5.2  | 4.3  |
| PBA-7  | Mean   | 5.8  | 5.3  | 7.1  | 4.1  | 6.0  | 6.5  |           |          |            |      |      |      |      |      |      |
|        | 90% CI | 4.7  | 3.9  | 6.1  | 3.5  | 4.2  | 5.0  |           |          |            |      |      |      |      |      |      |
|        |        | 7.1  | 7.3  | 8.3  | 4.8  | 8.5  | 8.4  |           |          |            |      |      |      |      |      |      |
| PBA-8  | Mean   | 4.8  | 6.1  | 6.2  | 4.1  | 5.7  | 5.6  | 4.9       | 4.2      | 3.2        | 3.9  | 2.1  | 3.1  | 3.3  | 3.1  | 2.7  |
|        | 90% CI | 3.9  | 5.0  | 5.1  | 3.4  | 4.6  | 4.8  | 4.0       | 3.2      | 2.7        | 2.4  | 1.5  | 2.5  | 2.8  | 2.3  | 2.3  |
|        |        | 6.0  | 7.5  | 7.6  | 5.0  | 7.1  | 6.6  | 6.0       | 5.5      | 3.9        | 6.1  | 2.9  | 4.0  | 3.8  | 4.0  | 3.1  |
| PBA-9  | Mean   | 7.5  | 10.9 | 11.5 | 8.2  | 9.1  | 11.8 | 9.3       | 10.0     | 8.5        | 8.5  | 6.2  | 7.9  | 7.1  | 6.6  | 5.5  |
|        | 90% CI | 5.1  | 8.0  | 10.1 | 6.7  | 7.2  | 9.4  | 7.2       | 7.8      | 6.7        | 4.9  | 5.0  | 6.2  | 6.3  | 5.6  | 4.0  |

|         |        | 11.1 | 14.8 | 13.0 | 10.2 | 11.5 | 14.8 | 12.1 | 12.7 | 11.0 | 14.5 | 7.7 | 10.1 | 7.9  | 7.8  | 7.3 |
|---------|--------|------|------|------|------|------|------|------|------|------|------|-----|------|------|------|-----|
| PBA-10  | Mean   | 6.3  | 6.8  | 7.1  | 5.3  | 7.1  | 6.0  | 6.6  | 5.7  | 6.3  | 4.7  | 3.4 | 5.7  | 6.6  | 5.7  | 4.3 |
|         | 90% CI | 4.1  | 4.7  | 5.5  | 4.6  | 5.6  | 4.6  | 5.5  | 5.0  | 3.5  | 2.9  | 2.7 | 4.6  | 5.5  | 4.6  | 3.3 |
|         |        | 9.8  | 9.9  | 9.2  | 6.2  | 9.0  | 7.8  | 7.8  | 6.7  | 11.5 | 7.7  | 4.4 | 7.0  | 8.0  | 7.1  | 5.5 |
| PBA-11  | Mean   | 6.6  | 8.7  | 6.8  | 9.9  | 10.3 | 8.9  | 11.7 | 4.6  | 4.0  | 5.2  | 4.6 | 10.7 | 8.4  | 6.6  | 4.8 |
|         | 90% CI | 3.8  | 4.8  | 5.4  | 5.6  | 6.0  | 5.7  | 6.1  | 2.7  | 2.1  | 2.7  | 3.5 | 5.1  | 5.0  | 3.6  | 2.8 |
|         |        | 11.5 | 15.5 | 8.6  | 17.6 | 17.8 | 13.8 | 22.3 | 7.7  | 7.8  | 9.9  | 6.0 | 22.1 | 14.2 | 12.1 | 8.3 |
| PBA-12  | Mean   | 3.6  | 4.2  | 4.9  | 3.8  | 4.2  | 4.6  | 3.7  | 2.9  | 1.9  | 2.9  | 2.2 | 3.3  | 2.8  | 1.6  | 1.7 |
|         | 90% CI | 2.6  | 2.9  | 3.9  | 2.9  | 3.3  | 3.7  | 2.4  | 2.4  | 1.4  | 1.5  | 1.8 | 2.5  | 2.5  | 1.4  | 1.3 |
|         |        | 4.9  | 6.0  | 6.3  | 5.1  | 5.3  | 5.8  | 5.7  | 3.5  | 2.6  | 5.8  | 2.8 | 4.6  | 3.1  | 1.9  | 2.2 |
| PBA-13  | Mean   | 4.2  | 4.1  | 4.8  | 4.2  | 4.7  | 5.8  | 4.5  | 4.0  | 2.1  | 4.2  | 2.7 | 3.1  | 3.0  | 1.7  | 1.5 |
|         | 90% CI | 2.9  | 3.1  | 3.8  | 2.8  | 3.6  | 4.4  | 3.3  | 2.9  | 1.7  | 3.2  | 2.2 | 2.3  | 2.5  | 1.5  | 1.3 |
|         |        | 6.1  | 5.3  | 6.0  | 6.4  | 6.2  | 7.7  | 6.2  | 5.6  | 2.7  | 5.6  | 3.3 | 4.1  | 3.6  | 1.9  | 1.8 |
| PBA-14  | Mean   | 6.5  | 9.8  | 9.6  | 10.1 | 16.5 | 12.4 | 10.0 |      |      |      | 6.9 | 11.3 | 9.3  | 6.1  | 4.2 |
|         | 90% CI | 4.2  | 7.2  | 7.4  | 8.1  | 12.7 | 9.2  | 6.9  |      |      |      | 4.8 | 9.8  | 7.8  | 4.9  | 3.3 |
|         |        | 10.1 | 13.4 | 12.5 | 12.6 | 21.3 | 16.8 | 14.5 |      |      |      | 9.8 | 12.9 | 11.1 | 7.6  | 5.4 |
| PBA-15  | Mean   | 6.2  | 6.8  | 7.0  | 6.5  | 10.0 | 9.5  | 9.3  | 10.2 | 5.4  | 6.3  | 5.6 | 7.3  | 5.5  | 3.9  | 2.9 |
|         | 90% CI | 3.9  | 5.0  | 5.4  | 5.1  | 7.5  | 7.1  | 6.9  | 6.5  | 4.3  | 4.2  | 4.1 | 5.6  | 4.3  | 3.4  | 2.1 |
|         |        | 9.7  | 9.3  | 8.9  | 8.4  | 13.3 | 12.8 | 12.5 | 16.1 | 6.9  | 9.5  | 7.6 | 9.5  | 6.9  | 4.6  | 4.1 |
| PBA-16  | Mean   | 4.9  | 7.7  | 5.9  | 6.2  | 8.3  | 9.6  | 10.4 |      |      |      | 3.1 | 7.6  | 9.0  | 4.4  | 3.3 |
|         | 90% CI | 3.1  | 5.5  | 4.3  | 4.0  | 6.2  | 6.3  | 6.5  |      |      |      | 2.4 | 6.2  | 6.4  | 3.6  | 2.4 |
|         |        | 7.8  | 10.8 | 8.1  | 9.6  | 11.2 | 14.8 | 16.9 |      |      |      | 4.0 | 9.2  | 12.7 | 5.4  | 4.5 |
| PBA-17A | Mean   |      |      |      |      |      |      |      |      |      |      | 5.4 | 5.4  | 4.0  | 2.4  | 2.9 |
|         | 90% CI |      |      |      |      |      |      |      |      |      |      | 4.2 | 3.3  | 2.5  | 1.4  | 2.3 |
|         |        |      |      |      |      |      |      |      |      |      |      | 6.9 | 8.9  | 6.5  | 3.9  | 3.8 |
| PBA-18  | Mean   |      |      | 6.6  | 2.9  | 5.1  | 4.3  |      |      |      |      |     |      |      |      |     |
|         | 90% CI |      |      | 5.9  | 2.1  | 3.7  | 3.6  |      |      |      |      |     |      |      |      |     |
|         |        |      |      | 7.5  | 4.1  | 7.0  | 5.1  |      |      |      |      |     |      |      |      |     |
| PBA-19  | Mean   |      |      | 5.0  | 3.6  | 2.7  | 3.8  |      |      |      |      |     |      |      | 1.5  | 2.3 |
|         | 90% CI |      |      | 4.5  | 2.6  | 1.3  | 3.0  |      |      |      |      |     |      |      | 1.2  | 1.9 |
|         |        |      |      | 5.5  | 5.0  | 5.6  | 4.9  |      |      |      |      |     |      |      | 1.7  | 2.7 |
| PBA-20  | Mean   |      |      | 7.2  | 3.8  | 5.4  | 5.5  |      |      |      |      |     |      |      | 3.1  | 2.9 |
|         | 90% CI |      |      | 6.3  | 3.0  | 3.9  | 5.0  |      |      |      |      |     |      |      | 2.5  | 2.3 |
|         |        |      |      | 8.2  | 4.7  | 7.5  | 6.0  |      |      |      |      |     |      |      | 3.9  | 3.7 |
| PBA-21  | Mean   |      |      | 5.0  | 3.3  | 3.5  | 4.1  |      |      |      |      |     |      |      | 1.7  | 1.8 |
|         | 90% CI |      |      | 4.3  | 2.7  | 2.8  | 3.4  |      |      |      |      |     |      |      | 1.4  | 1.5 |
|         |        |      |      | 5.7  | 4.1  | 4.3  | 4.9  |      |      |      |      |     |      |      | 2.1  | 2.2 |
| WMO-2   | Mean   |      | 7.1  | 5.4  | 5.4  | 7.4  |      |      |      |      |      |     |      |      |      |     |

|        | 90% CI | 5.0  | 4.9  | 4.5  | 4.3  |      |      |      |      |      |     |      |      |     |     |
|--------|--------|------|------|------|------|------|------|------|------|------|-----|------|------|-----|-----|
|        |        | 10.2 | 6.0  | 6.5  | 12.9 |      |      |      |      |      |     |      |      |     |     |
| WMO-3  | Mean   | 3.9  | 4.1  | 3.9  | 3.9  |      | 4.5  | 3.1  | 2.8  | 2.8  | 1.9 | 4.3  | 3.6  | 1.5 | 1.6 |
|        | 90% CI | 2.3  | 2.9  | 2.7  | 2.5  |      | 3.1  | 1.8  | 1.5  | 1.2  | 1.4 | 2.5  | 2.7  | 1.1 | 0.9 |
|        |        | 6.6  | 5.7  | 5.7  | 6.3  |      | 6.7  | 5.3  | 5.5  | 6.7  | 2.6 | 7.5  | 4.7  | 2.2 | 2.8 |
| WMO-4  | Mean   | 4.9  | 4.7  | 5.3  | 4.5  |      |      |      |      |      |     |      |      |     |     |
|        | 90% CI | 2.3  | 3.6  | 2.9  | 1.9  |      |      |      |      |      |     |      |      |     |     |
|        |        | 10.7 | 6.0  | 10.0 | 10.3 |      |      |      |      |      |     |      |      |     |     |
| WMO-5  | Mean   | 3.6  | 4.7  | 4.0  | 4.7  | 5.7  | 6.9  | 6.7  | 6.1  | 3.5  | 4.0 | 5.5  | 8.4  | 2.0 | 1.1 |
|        | 90% CI | 2.6  | 2.6  | 3.3  | 2.6  | 4.2  | 4.7  | 5.0  | 3.4  | 1.9  | 2.4 | 4.4  | 5.2  | 1.5 | 0.3 |
|        |        | 5.0  | 8.6  | 4.8  | 8.3  | 7.9  | 10.1 | 9.1  | 10.7 | 6.5  | 6.7 | 6.8  | 13.6 | 2.6 | 4.5 |
| WMO-6  | Mean   | 5.1  | 4.7  | 6.1  | 10.1 |      | 9.5  | 13.9 | 6.8  | 4.8  | 4.8 | 8.0  | 6.1  | 4.2 | 1.1 |
|        | 90% CI | 3.7  | 2.9  | 3.6  | 7.1  |      | 5.7  | 6.5  | 2.9  | 2.0  | 3.5 | 6.4  | 4.7  | 2.9 | 0.2 |
|        |        | 7.1  | 7.6  | 10.3 | 14.1 |      | 15.8 | 29.6 | 16.1 | 11.6 | 6.5 | 10.1 | 7.9  | 6.0 | 7.5 |
| WMO-7  | Mean   | 4.5  | 4.2  | 4.9  | 5.8  |      |      |      |      |      |     |      |      |     |     |
|        | 90% CI | 2.5  | 2.7  | 3.0  | 4.0  |      |      |      |      |      |     |      |      |     |     |
|        |        | 8.0  | 6.4  | 8.0  | 8.5  |      |      |      |      |      |     |      |      |     |     |
| WMO-8  | Mean   | 4.7  | 3.3  | 4.0  | 6.3  |      |      |      |      |      |     |      |      | 2.0 | 2.2 |
|        | 90% CI | 2.9  | 1.5  | 2.3  | 4.3  |      |      |      |      |      |     |      |      | 1.9 | 1.3 |
|        |        | 7.6  | 6.9  | 7.0  | 9.1  |      |      |      |      |      |     |      |      | 2.0 | 3.6 |
| WMO-9  | Mean   | 5.2  | 3.8  | 5.3  | 7.6  | 9.6  |      |      |      |      |     |      |      |     | 1.4 |
|        | 90% CI | 3.6  | 1.4  | 3.9  | 6.2  | 6.5  |      |      |      |      |     |      |      |     |     |
|        |        | 7.3  | 10.4 | 7.2  | 9.4  | 14.1 |      |      |      |      |     |      |      |     |     |
| WMO-10 | Mean   | 6.6  | 4.8  | 6.9  | 10.5 |      | 11.2 | 10.9 | 6.2  | 4.0  | 3.5 | 6.4  | 6.3  | 4.2 | 1.3 |
|        | 90% CI | 3.8  | 3.7  | 4.3  | 6.2  |      | 8.8  | 6.6  | 4.3  | 2.8  | 3.0 | 5.4  | 5.3  | 3.7 | 0.5 |
|        |        | 11.5 | 6.4  | 11.2 | 17.9 |      | 14.4 | 17.9 | 8.8  | 5.9  | 4.0 | 7.5  | 7.6  | 4.7 | 3.6 |
| WMO-12 | Mean   | 5.9  | 6.2  | 4.2  | 3.9  |      |      |      |      |      | 2.6 | 4.7  | 5.6  | 5.1 | 3.2 |
|        | 90% CI | 3.7  | 3.2  | 3.3  | 2.6  |      |      |      |      |      | 1.9 | 3.7  | 4.2  | 4.2 | 2.1 |
|        |        | 9.6  | 12.0 | 5.2  | 5.8  |      |      |      |      |      | 3.5 | 6.0  | 7.5  | 6.2 | 5.0 |

#### **Dissolved Oxygen**

| Site   | 9      |      |      |      |      |      |      | Dissolve | d Oxyger | n (mg/L) |      |      |      |      |      |      |
|--------|--------|------|------|------|------|------|------|----------|----------|----------|------|------|------|------|------|------|
|        |        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006     | 2007     | 2008     | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| CM-13  | Mean   | 6.5  | 6.8  | 6.4  | 6.4  | 6.3  | 6.0  | 6.3      | 5.7      | 4.2      | 4.7  | 6.2  | 6.5  | 4.9  | 6.9  | 5.9  |
|        | 90% CI | 6.0  | 6.3  | 6.0  | 5.7  | 6.0  | 5.7  | 5.7      | 5.2      | 3.8      | 4.5  | 5.6  | 6.2  | 4.8  | 6.3  | 5.6  |
|        |        | 7.1  | 7.3  | 6.8  | 7.1  | 6.6  | 6.4  | 6.8      | 6.1      | 4.6      | 5.0  | 6.7  | 6.9  | 5.0  | 7.5  | 6.3  |
| CM-14  | Mean   | 5.5  | 5.1  | 5.3  | 5.7  | 5.8  | 7.2  |          |          |          |      |      |      |      |      |      |
|        | 90% CI | 4.4  | 4.1  | 4.9  | 5.3  | 3.9  | 2.1  |          |          |          |      |      |      |      |      |      |
|        |        | 6.5  | 6.1  | 5.7  | 6.0  | 7.7  | 12.3 |          |          |          |      |      |      |      |      |      |
| PBA-1  | Mean   | 6.4  | 8.1  | 7.8  | 8.7  | 8.0  | 9.0  | 7.7      |          |          |      |      |      |      | 7.4  | 6.4  |
|        | 90% CI | 6.2  | 7.8  | 7.3  | 8.2  | 7.6  | 8.8  | 7.5      |          |          |      |      |      |      | 6.8  | 6.0  |
|        |        | 6.7  | 8.4  | 8.2  | 9.2  | 8.5  | 9.3  | 7.9      |          |          |      |      |      |      | 8.1  | 6.7  |
| PBA-2  | Mean   | 6.8  | 6.6  | 6.3  | 7.7  | 6.4  |      |          |          |          |      |      |      |      |      |      |
|        | 90% CI | 6.3  | 6.1  | 6.0  | 4.4  | 5.0  |      |          |          |          |      |      |      |      |      |      |
|        |        | 7.2  | 7.1  | 6.7  | 11.1 | 7.8  |      |          |          |          |      |      |      |      |      |      |
| PBA-3  | Mean   | 6.0  | 6.5  | 5.6  | 6.4  | 5.9  | 5.8  | 6.1      | 5.4      | 5.0      | 4.1  | 5.9  | 5.7  | 6.1  | 6.0  | 8.2  |
|        | 90% CI | 5.5  | 6.1  | 4.9  | 5.5  | 5.4  | 4.8  | 4.7      | 4.8      | 4.4      | 2.7  | 5.5  | 5.0  | 5.7  | 4.8  | 7.5  |
|        |        | 6.6  | 7.0  | 6.3  | 7.2  | 6.4  | 6.8  | 7.5      | 6.1      | 5.6      | 5.5  | 6.3  | 6.4  | 6.5  | 7.2  | 8.9  |
| PBA-4  | Mean   | 6.6  | 7.9  | 6.6  | 6.7  | 6.5  | 6.2  | 6.3      | 5.8      | 5.4      | 5.5  | 6.7  | 6.4  | 6.2  | 6.4  | 7.6  |
|        | 90% CI | 5.7  | 6.9  | 5.2  | 6.2  | 6.1  | 5.6  | 5.8      | 5.3      | 4.9      | 5.2  | 6.2  | 6.0  | 5.8  | 5.9  | 7.2  |
|        |        | 7.5  | 8.8  | 7.9  | 7.2  | 7.0  | 6.8  | 6.7      | 6.2      | 5.8      | 5.7  | 7.2  | 6.8  | 6.7  | 6.9  | 8.0  |
| PBA-5  | Mean   | 6.5  | 5.9  | 5.8  | 6.8  | 6.2  | 3.8  | 5.0      | 6.1      | 4.8      | 5.7  | 5.3  | 5.2  | 5.6  | 5.0  | 5.4  |
|        | 90% CI | 5.6  | 4.9  | 5.0  | 5.5  | 5.1  | 2.1  | 3.5      | 0.5      | 3.6      | 3.2  | 4.3  | 3.6  | 4.4  | 4.1  | 3.8  |
|        |        | 7.3  | 6.9  | 6.5  | 8.1  | 7.3  | 5.4  | 6.6      | 11.6     | 6.0      | 8.1  | 6.2  | 6.7  | 6.7  | 5.8  | 6.9  |
| PBA-5A | Mean   |      |      | 4.8  | 8.0  | 6.2  | 7.4  | 4.9      | 7.7      | 6.2      | 5.6  | 5.9  | 8.2  | 6.1  | 7.1  | 5.0  |
|        | 90% CI |      |      | 2.7  | 2.8  | 4.6  | 5.8  | 2.5      | 4.5      | 3.1      | 3.7  | 3.7  | 5.1  | 3.9  | 3.3  | 2.3  |
|        |        |      |      | 6.8  | 13.3 | 7.7  | 9.1  | 7.2      | 10.8     | 9.2      | 7.6  | 8.1  | 11.2 | 8.2  | 11.0 | 7.7  |
| PBA-6  | Mean   | 6.3  | 5.4  | 5.5  | 5.6  | 6.1  | 5.9  |          |          |          |      | 7.6  | 6.9  | 6.7  | 6.4  | 7.2  |
|        | 90% CI | 5.5  | 4.3  | 4.8  | 4.2  | 5.3  | 5.1  |          |          |          |      | 6.9  | 6.3  | 6.4  | 6.3  | 6.5  |
|        |        | 7.0  | 6.5  | 6.2  | 7.0  | 6.9  | 6.6  |          |          |          |      | 8.4  | 7.5  | 7.0  | 6.6  | 7.9  |
| PBA-7  | Mean   | 6.8  | 6.5  | 7.4  | 6.3  | 6.5  | 5.7  |          |          |          |      |      |      |      |      |      |
|        | 90% CI | 6.3  | 5.6  | 6.6  | 5.9  | 6.1  | 4.7  |          |          |          |      |      |      |      |      |      |
|        |        | 7.3  | 7.5  | 8.1  | 6.8  | 6.9  | 6.7  |          |          |          |      |      |      |      |      |      |
| PBA-8  | Mean   | 5.4  | 6.6  | 7.0  | 7.6  | 6.8  | 6.7  | 7.2      | 6.1      | 6.7      | 5.6  | 7.5  | 7.3  | 5.9  | 7.4  | 6.4  |
|        | 90% CI | 4.0  | 6.1  | 6.5  | 7.0  | 6.4  | 6.0  | 6.6      | 5.5      | 5.4      | 5.3  | 6.8  | 6.9  | 5.6  | 7.0  | 6.0  |
|        |        | 6.7  | 7.2  | 7.5  | 8.2  | 7.2  | 7.4  | 7.9      | 6.7      | 8.0      | 6.0  | 8.3  | 7.6  | 6.1  | 7.9  | 6.9  |
| PBA-9  | Mean   | 6.2  | 7.0  | 6.2  | 7.0  | 7.0  | 5.9  | 5.5      | 6.7      | 4.7      | 5.2  | 6.4  | 6.4  | 5.1  | 5.6  | 5.4  |
|        | 90% CI | 5.0  | 6.6  | 5.7  | 6.4  | 6.6  | 5.5  | 4.5      | 6.0      | 4.4      | 5.0  | 5.8  | 5.9  | 4.6  | 4.9  | 4.8  |

|         |        | 7.4 | 7.5 | 6.7 | 7.6 | 7.4 | 6.4 | 6.4 | 7.3 | 5.1 | 5.4 | 7.0 | 6.9 | 5.6 | 6.2 | 5.9 |
|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| PBA-10  | Mean   | 5.9 | 5.4 | 5.4 | 5.9 | 6.0 | 5.3 | 5.2 | 5.5 | 4.1 | 3.7 | 5.3 | 6.1 | 4.3 | 5.2 | 5.6 |
|         | 90% CI | 5.3 | 5.0 | 5.2 | 5.5 | 5.6 | 4.9 | 4.7 | 5.1 | 3.6 | 2.7 | 4.9 | 5.6 | 4.1 | 4.8 | 5.2 |
|         |        | 6.6 | 5.8 | 5.6 | 6.3 | 6.3 | 5.8 | 5.6 | 5.8 | 4.5 | 4.7 | 5.7 | 6.6 | 4.5 | 5.6 | 5.9 |
| PBA-11  | Mean   | 5.2 | 4.6 | 4.1 | 5.2 | 4.7 | 4.6 | 4.6 | 5.2 | 4.1 | 3.7 | 5.9 | 4.6 | 3.8 | 4.7 | 5.0 |
|         | 90% CI | 4.4 | 3.4 | 3.2 | 3.0 | 3.2 | 3.5 | 3.5 | 4.5 | 4.0 | 2.7 | 5.3 | 3.1 | 2.9 | 3.5 | 4.3 |
|         |        | 6.1 | 5.7 | 5.1 | 7.4 | 6.1 | 5.6 | 5.7 | 5.9 | 4.3 | 4.6 | 6.4 | 6.1 | 4.6 | 5.8 | 5.6 |
| PBA-12  | Mean   | 5.9 | 5.1 | 5.0 | 5.6 | 5.9 | 5.0 | 5.4 | 5.6 | 4.7 | 4.9 | 6.2 | 6.3 | 5.3 | 5.7 | 5.7 |
|         | 90% CI | 5.1 | 4.6 | 4.4 | 5.2 | 5.5 | 4.6 | 4.9 | 5.0 | 4.4 | 4.4 | 5.9 | 6.0 | 5.2 | 5.4 | 5.5 |
|         |        | 6.7 | 5.5 | 5.5 | 6.0 | 6.2 | 5.5 | 6.0 | 6.3 | 5.1 | 5.3 | 6.6 | 6.7 | 5.5 | 6.0 | 5.9 |
| PBA-13  | Mean   | 5.4 | 5.0 | 4.5 | 5.5 | 5.1 | 5.0 | 5.5 | 6.0 | 4.6 | 4.8 | 5.4 | 5.5 | 4.3 | 4.8 | 5.1 |
|         | 90% CI | 4.8 | 4.7 | 4.2 | 4.8 | 4.7 | 4.2 | 5.1 | 5.5 | 4.2 | 4.4 | 5.0 | 5.2 | 4.1 | 4.4 | 4.9 |
|         |        | 6.1 | 5.3 | 4.8 | 6.2 | 5.4 | 5.8 | 5.8 | 6.5 | 4.9 | 5.1 | 5.8 | 5.8 | 4.6 | 5.2 | 5.3 |
| PBA-14  | Mean   | 4.5 | 4.8 | 4.2 | 5.2 | 4.8 | 4.7 | 3.6 |     |     |     | 5.4 | 5.6 | 4.5 | 4.9 | 4.4 |
|         | 90% CI | 3.5 | 4.2 | 3.5 | 4.1 | 4.0 | 4.0 | 2.8 |     |     |     | 4.7 | 4.9 | 3.6 | 4.2 | 3.8 |
|         |        | 5.5 | 5.4 | 4.8 | 6.2 | 5.5 | 5.5 | 4.3 |     |     |     | 6.2 | 6.2 | 5.3 | 5.5 | 4.9 |
| PBA-15  | Mean   | 5.5 | 4.7 | 4.7 | 5.0 | 4.5 | 4.7 | 4.8 | 5.5 | 4.9 | 3.6 | 5.1 | 5.6 | 4.5 | 5.4 | 4.9 |
|         | 90% CI | 4.8 | 4.3 | 4.3 | 4.2 | 4.1 | 4.1 | 4.2 | 4.4 | 4.1 | 3.0 | 4.6 | 5.3 | 3.9 | 4.8 | 4.5 |
|         |        | 6.1 | 5.2 | 5.1 | 5.7 | 5.0 | 5.3 | 5.5 | 6.6 | 5.7 | 4.3 | 5.5 | 6.0 | 5.1 | 6.0 | 5.3 |
| PBA-16  | Mean   | 5.1 | 4.3 | 5.5 | 3.9 | 4.1 | 3.3 | 5.1 |     |     |     | 4.8 | 4.4 | 3.9 | 4.9 | 4.9 |
|         | 90% CI | 3.8 | 2.5 | 4.5 | 2.2 | 3.3 | 1.9 | 3.9 |     |     |     | 4.0 | 3.9 | 3.3 | 3.9 | 4.3 |
|         |        | 6.5 | 6.1 | 6.4 | 5.6 | 4.9 | 4.7 | 6.3 |     |     |     | 5.7 | 4.9 | 4.5 | 5.9 | 5.5 |
| PBA-17A | Mean   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|         | 90% CI |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|         |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| PBA-18  | Mean   |     |     | 6.6 | 6.6 | 6.4 | 6.4 |     |     |     |     |     |     |     |     |     |
|         | 90% CI |     |     | 6.4 | 6.3 | 6.3 | 5.9 |     |     |     |     |     |     |     |     |     |
|         |        |     |     | 6.8 | 6.8 | 6.6 | 6.9 |     |     |     |     |     |     |     |     |     |
| PBA-19  | Mean   |     |     | 7.3 | 7.9 | 7.4 | 7.8 |     |     |     |     |     |     |     | 7.5 | 7.4 |
|         | 90% CI |     |     | 6.9 | 7.3 | 7.0 | 6.7 |     |     |     |     |     |     |     | 7.2 | 6.9 |
|         |        |     |     | 7.7 | 8.6 | 7.8 | 8.9 |     |     |     |     |     |     |     | 7.9 | 7.8 |
| PBA-20  | Mean   |     |     | 6.7 | 6.3 | 6.7 | 6.5 |     |     |     |     |     |     |     | 7.8 | 6.5 |
|         | 90% CI |     |     | 6.5 | 6.0 | 6.5 | 6.1 |     |     |     |     |     |     |     | 7.3 | 5.4 |
|         |        |     |     | 7.0 | 6.6 | 7.0 | 6.9 |     |     |     |     |     |     |     | 8.3 | 7.5 |
| PBA-21  | Mean   |     |     | 5.5 | 5.4 | 6.0 | 5.6 |     |     |     |     |     |     |     | 6.1 | 6.2 |
|         | 90% CI |     |     | 5.0 | 4.3 | 5.8 | 5.3 |     |     |     |     |     |     |     | 5.8 | 5.9 |
|         |        |     |     | 6.0 | 6.5 | 6.2 | 6.0 |     |     |     |     |     |     |     | 6.5 | 6.5 |
| WMO-2   | Mean   |     | 8.2 | 6.7 | 7.4 | 7.2 |     |     |     |     |     |     |     |     |     |     |

|        | 90% CI | 7.7 | 5.4 | 6.2 | 6.0 |     |     |     |     |     |      |     |     |     |     |
|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|
|        |        | 8.7 | 7.9 | 8.6 | 8.3 |     |     |     |     |     |      |     |     |     |     |
| WMO-3  | Mean   | 6.2 | 4.9 | 7.2 | 6.4 |     | 5.2 | 4.9 | 4.1 | 4.0 | 5.6  | 5.4 | 4.5 | 5.4 | 4.2 |
|        | 90% CI | 5.6 | 3.9 | 5.8 | 6.1 |     | 4.3 | 3.7 | 3.6 | 2.9 | 4.9  | 4.8 | 4.2 | 4.2 | 3.5 |
|        |        | 6.9 | 6.0 | 8.6 | 6.8 |     | 6.1 | 6.1 | 4.7 | 5.2 | 6.3  | 6.0 | 4.7 | 6.6 | 5.0 |
| WMO-4  | Mean   | 5.2 | 5.2 | 6.3 | 5.4 |     |     |     |     |     |      |     |     |     |     |
|        | 90% CI | 4.9 | 4.6 | 5.7 | 4.3 |     |     |     |     |     |      |     |     |     |     |
|        |        | 5.6 | 5.8 | 6.8 | 6.6 |     |     |     |     |     |      |     |     |     |     |
| WMO-5  | Mean   | 4.8 | 4.8 | 5.8 | 5.4 | 4.1 | 4.1 | 3.0 | 2.2 | 2.4 | 3.3  | 3.5 | 3.3 | 3.4 | 3.6 |
|        | 90% CI | 4.4 | 4.0 | 5.0 | 4.5 | 2.9 | 2.8 | 1.7 | 1.7 | 1.4 | 2.1  | 2.1 | 2.6 | 2.8 | 3.3 |
|        |        | 5.2 | 5.5 | 6.5 | 6.3 | 5.3 | 5.5 | 4.4 | 2.7 | 3.5 | 4.5  | 4.9 | 4.1 | 3.9 | 3.9 |
| WMO-6  | Mean   | 5.1 | 4.6 | 5.7 | 5.8 |     | 4.7 | 4.6 | 3.7 | 4.5 | 6.2  | 5.5 | 3.7 | 4.8 | 3.9 |
|        | 90% CI | 4.7 | 4.3 | 4.7 | 5.2 |     | 3.9 | 2.7 | 3.0 | 3.3 | 5.5  | 4.4 | 3.2 | 3.8 | 3.6 |
|        |        | 5.4 | 4.9 | 6.6 | 6.4 |     | 5.4 | 6.4 | 4.4 | 5.8 | 6.9  | 6.6 | 4.2 | 5.8 | 4.3 |
| WMO-7  | Mean   | 5.3 | 4.8 | 6.0 | 6.0 |     |     |     |     |     |      |     |     |     |     |
|        | 90% CI | 5.0 | 4.5 | 5.4 | 5.6 |     |     |     |     |     |      |     |     |     |     |
|        |        | 5.6 | 5.2 | 6.6 | 6.4 |     |     |     |     |     |      |     |     |     |     |
| WMO-8  | Mean   | 5.7 | 5.8 | 6.8 | 6.0 |     |     |     |     |     |      |     |     | 5.8 | 5.2 |
|        | 90% CI | 5.4 | 5.1 | 5.6 | 5.7 |     |     |     |     |     |      |     |     | 5.5 | 4.3 |
|        |        | 5.9 | 6.6 | 8.0 | 6.4 |     |     |     |     |     |      |     |     | 6.2 | 6.0 |
| WMO-9  | Mean   | 5.0 | 5.1 | 6.0 | 5.2 | 5.5 |     |     |     |     |      |     |     |     | 5.1 |
|        | 90% CI | 4.7 | 4.2 | 4.7 | 4.9 | 3.8 |     |     |     |     |      |     |     |     |     |
|        |        | 5.4 | 5.9 | 7.2 | 5.5 | 7.2 |     |     |     |     |      |     |     |     |     |
| WMO-10 | Mean   |     |     |     | 7.3 |     | 4.3 | 4.3 | 3.5 | 4.1 | 9.0  | 5.1 | 4.3 | 4.9 | 5.1 |
|        | 90% CI |     |     |     | 7.2 |     | 3.8 | 3.6 | 3.2 | 3.8 | 3.8  | 4.6 | 4.0 | 4.1 | 4.5 |
|        |        |     |     |     | 7.4 |     | 4.7 | 5.0 | 3.8 | 4.5 | 14.1 | 5.5 | 4.6 | 5.7 | 5.6 |
| WMO-12 | Mean   | 5.3 | 5.8 | 5.6 | 5.5 |     |     |     |     |     | 5.2  | 5.3 | 4.1 | 5.3 | 4.6 |
|        | 90% CI | 5.2 | 5.2 | 4.8 | 4.3 |     |     |     |     |     | 4.6  | 4.5 | 3.7 | 4.8 | 4.0 |
|        |        | 5.5 | 6.5 | 6.3 | 6.7 |     |     |     |     |     | 5.9  | 6.2 | 4.4 | 5.8 | 5.1 |

## **Appendix C. Exceedances of Targets and Thresholds**

The following tables present the percent of samples exceeding thresholds/targets for bioactive nitrogen, dissolved oxygen, and total phytopigments by year. Bioactive nitrogen thresholds were established by the Massachusetts Estuaries Program (MEP) to support the development of the 2007 Pleasant Bay TMDL (Howes et al. 2006). The dissolved oxygen target is the Massachusetts water quality standard for coastal waters. The total phytopigment target is a guidance value established by the National Oceanic and Atmospheric Administration (NOAA).

| Site ID | MEP Modeled                              |      |      |      | Percent | of Samp | les Excee | ding ME | P Restora | tion Tar | get for Bi | oactive N | litrogen |      |      |      |
|---------|------------------------------------------|------|------|------|---------|---------|-----------|---------|-----------|----------|------------|-----------|----------|------|------|------|
|         | Restoration<br>Value (mg/L) <sup>5</sup> | 2000 | 2001 | 2002 | 2003    | 2004    | 2005      | 2006    | 2007      | 2008     | 2009       | 2010      | 2011     | 2012 | 2013 | 2014 |
| CM-13   | 0.138                                    | 84%  | 44%  | 100% | 75%     | 93%     | 36%       | 25%     | 30%       | 60%      | 60%        | 30%       | 100%     | 100% | 70%  | 60%  |
| CM-14   | 0.173                                    | 100% | 67%  | 100% | 100%    | 100%    | 50%       |         |           |          |            |           |          |      |      |      |
| PBA-1   | 0.102                                    | 90%  | 27%  | 86%  | 27%     | 17%     | 14%       | 0%      |           |          |            |           |          |      | 0%   | 75%  |
| PBA-2   | 0.12                                     | 90%  | 13%  | 86%  | 20%     | 0%      |           |         |           |          |            |           |          |      |      |      |
| PBA-3   | 0.19                                     | 45%  | 25%  | 92%  | 85%     | 86%     | 93%       | 57%     | 50%       | 78%      | 71%        | 56%       | 80%      | 88%  | 20%  | 22%  |
| PBA-4   | 0.149                                    | 80%  | 38%  | 100% | 90%     | 69%     | 57%       | 50%     | 60%       | 20%      | 50%        | 75%       | 40%      | 100% | 30%  | 0%   |
| PBA-5   | 0.208                                    | 56%  | 63%  | 80%  | 83%     | 67%     | 57%       | 100%    | 100%      | 100%     | 75%        | 60%       | 80%      | 80%  | 100% | 40%  |
| PBA-5A  | 0.405                                    |      |      | 83%  | 100%    | 86%     | 100%      | 100%    | 100%      | 100%     | 100%       | 100%      | 60%      | 100% | 100% | 75%  |
| PBA-6   | 0.169                                    | 78%  | 60%  | 90%  | 75%     | 42%     | 50%       |         |           |          |            | 50%       | 70%      | 13%  | 30%  | 40%  |
| PBA-7   | 0.153                                    | 67%  | 33%  | 71%  | 43%     | 36%     | 42%       |         |           |          |            |           |          |      |      |      |
| PBA-8   | 0.139                                    | 78%  | 50%  | 79%  | 71%     | 43%     | 29%       | 33%     | 13%       | 22%      | 30%        | 0%        | 70%      | 100% | 100% | 38%  |
| PBA-9   | 0.207                                    | 58%  | 58%  | 100% | 79%     | 64%     | 62%       | 83%     | 40%       | 70%      | 10%        | 80%       | 50%      | 90%  | 70%  | 80%  |
| PBA-10  | None                                     |      |      |      |         |         |           |         |           |          |            |           |          |      |      |      |
| PBA-11  | 0.209                                    | 33%  | 36%  | 57%  | 75%     | 50%     | 43%       | 58%     | 0%        | 13%      | 30%        | 10%       | 10%      | 40%  | 60%  | 40%  |
| PBA-12  | 0.16                                     | 75%  | 17%  | 86%  | 77%     | 64%     | 14%       | 25%     | 40%       | 0%       | 20%        | 0%        | 60%      | 50%  | 10%  | 20%  |
| PBA-13  | 0.172                                    | 64%  | 17%  | 71%  | 67%     | 40%     | 23%       | 50%     | 30%       | 20%      | 20%        | 50%       | 20%      | 70%  | 30%  | 38%  |
| PBA-14  | 0.253                                    | 58%  | 42%  | 85%  | 79%     | 100%    | 93%       | 83%     |           |          |            | 70%       | 30%      | 100% | 80%  | 60%  |
| PBA-15  | 0.208                                    | 92%  | 25%  | 100% | 92%     | 100%    | 100%      | 100%    | 90%       | 100%     | 40%        | 90%       | 100%     | 100% | 40%  | 60%  |
| PBA-16  | 0.262                                    | 75%  | 33%  | 69%  | 85%     | 69%     | 71%       | 50%     |           |          |            | 60%       | 70%      | 70%  | 40%  | 30%  |
| PBA-17A | 0.098                                    |      |      |      |         |         |           |         |           |          |            | 33%       | 75%      | 67%  | 0%   | 43%  |
| PBA-18  | 0.112                                    |      |      | 89%  | 50%     | 70%     | 21%       |         |           |          |            |           |          |      |      |      |
| PBA-19  | 0.113                                    |      |      | 100% | 60%     | 64%     | 90%       |         |           |          |            |           |          |      | 0%   | 100% |
| PBA-20  | 0.118                                    |      |      | 100% | 67%     | 64%     | 29%       |         |           |          |            |           |          |      | 33%  | 100% |
| PBA-21  | 0.148                                    |      |      | 70%  | 58%     | 8%      | 14%       |         |           |          |            |           |          |      | 0%   | 20%  |
| WMO-2   | 0.147                                    |      | 73%  | 100% | 78%     | 50%     |           |         |           |          |            |           |          |      |      |      |
| WMO-3   | 0.164                                    |      | 50%  | 63%  | 67%     | 50%     |           | 33%     | 40%       | 0%       | 0%         | 20%       | 0%       | 100% | 0%   | 0%   |
| WMO-4   | 0.179                                    |      | 67%  | 100% | 100%    | 50%     |           |         |           |          |            |           |          |      |      |      |
| WMO-5   | 0.211                                    |      | 67%  | 75%  | 83%     | 33%     | 83%       | 67%     | 40%       | 60%      | 60%        | 60%       | 80%      | 100% | 40%  | 80%  |
| WMO-6   | 0.206                                    |      | 100% | 67%  | 100%    | 100%    |           | 83%     | 100%      | 40%      | 40%        | 80%       | 100%     | 100% | 40%  | 40%  |
| WMO-7   | 0.188                                    |      | 83%  | 67%  | 100%    | 80%     |           |         |           |          |            |           |          |      |      |      |
| WMO-8   | 0.182                                    |      | 83%  | 67%  | 100%    | 80%     |           |         |           |          |            |           |          |      | 0%   | 50%  |
| WMO-9   | 0.196                                    |      | 83%  | 83%  | 100%    | 100%    | 83%       |         |           |          |            |           |          |      |      | 0%   |
| WMO-10  | 0.207                                    |      | 67%  | 73%  | 100%    | 100%    |           | 100%    | 100%      | 100%     | 40%        | 70%       | 90%      | 100% | 60%  | 80%  |

<sup>&</sup>lt;sup>5</sup> From Table VIII-6 in: Howes, Samimy, Schlezinger, Kelley, Ramsey, & Eichner, 2006.

| Site ID | Percent of Samples Not Meeting Dissolved Oxygen Standard of 6 mg/L |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|---------|--------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|         | 2000                                                               | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| CM-13   | 35%                                                                | 6%   | 29%  | 33%  | 29%  | 42%  | 42%  | 70%  | 100% | 100% | 40%  | 20%  | 100% | 20%  | 60%  |
| CM-14   | 64%                                                                | 86%  | 86%  | 100% | 75%  | 83%  |      |      |      |      |      |      |      |      |      |
| PBA-1   | 20%                                                                | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   |      |      |      |      |      |      | 0%   | 25%  |
| PBA-2   | 20%                                                                | 13%  | 29%  | 20%  | 20%  |      |      |      |      |      |      |      |      |      |      |
| PBA-3   | 57%                                                                | 21%  | 64%  | 38%  | 58%  | 50%  | 38%  | 80%  | 100% | 100% | 40%  | 50%  | 50%  | 50%  | 0%   |
| PBA-4   | 40%                                                                | 13%  | 21%  | 17%  | 21%  | 33%  | 20%  | 70%  | 75%  | 100% | 25%  | 30%  | 50%  | 30%  | 0%   |
| PBA-5   | 36%                                                                | 38%  | 50%  | 33%  | 20%  | 83%  | 80%  | 67%  | 80%  | 50%  | 80%  | 75%  | 80%  | 80%  | 60%  |
| PBA-5A  |                                                                    |      | 83%  | 33%  | 33%  | 29%  | 80%  | 40%  | 60%  | 50%  | 40%  | 20%  | 60%  | 25%  | 60%  |
| PBA-6   | 30%                                                                | 60%  | 60%  | 33%  | 33%  | 50%  |      |      |      |      | 0%   | 10%  | 13%  | 0%   | 20%  |
| PBA-7   | 10%                                                                | 33%  | 14%  | 36%  | 21%  | 50%  |      |      |      |      |      |      |      |      |      |
| PBA-8   | 50%                                                                | 9%   | 7%   | 7%   | 13%  | 21%  | 17%  | 10%  | 50%  | 80%  | 0%   | 0%   | 75%  | 0%   | 38%  |
| PBA-9   | 25%                                                                | 8%   | 42%  | 7%   | 14%  | 38%  | 75%  | 25%  | 100% | 100% | 30%  | 30%  | 80%  | 60%  | 60%  |
| PBA-10  | 58%                                                                | 83%  | 100% | 64%  | 64%  | 79%  | 92%  | 100% | 100% | 100% | 90%  | 40%  | 100% | 100% | 80%  |
| PBA-11  | 58%                                                                | 91%  | 93%  | 67%  | 83%  | 79%  | 75%  | 100% | 100% | 90%  | 60%  | 60%  | 100% | 70%  | 80%  |
| PBA-12  | 58%                                                                | 83%  | 86%  | 71%  | 50%  | 86%  | 75%  | 80%  | 100% | 100% | 30%  | 30%  | 100% | 80%  | 80%  |
| PBA-13  | 67%                                                                | 100% | 100% | 60%  | 90%  | 71%  | 83%  | 60%  | 100% | 100% | 80%  | 70%  | 100% | 90%  | 100% |
| PBA-14  | 75%                                                                | 92%  | 100% | 79%  | 86%  | 86%  | 100% |      |      |      | 75%  | 80%  | 90%  | 80%  | 90%  |
| PBA-15  | 80%                                                                | 92%  | 100% | 83%  | 100% | 92%  | 90%  | 75%  | 88%  | 100% | 90%  | 75%  | 100% | 60%  | 90%  |
| PBA-16  | 42%                                                                | 67%  | 67%  | 75%  | 92%  | 86%  | 71%  |      |      |      | 88%  | 100% | 100% | 70%  | 80%  |
| PBA-18  |                                                                    |      | 0%   | 0%   | 0%   | 43%  |      |      |      |      |      |      |      |      |      |
| PBA-19  |                                                                    |      | 0%   | 0%   | 0%   | 0%   |      |      |      |      |      |      |      | 0%   | 0%   |
| PBA-20  |                                                                    |      | 0%   | 33%  | 0%   | 29%  |      |      |      |      |      |      |      | 0%   | 20%  |
| PBA-21  |                                                                    |      | 90%  | 75%  | 42%  | 71%  |      |      |      |      |      |      |      | 33%  | 38%  |
| WMO-2   |                                                                    | 0%   | 8%   | 17%  | 14%  |      |      |      |      |      |      |      |      |      |      |
| WMO-3   |                                                                    | 50%  | 75%  | 38%  | 20%  |      | 83%  | 100% | 100% | 100% | 75%  | 80%  | 100% | 80%  | 100% |
| WMO-4   |                                                                    | 100% | 100% | 38%  | 67%  |      |      |      |      |      |      |      |      |      |      |
| WMO-5   |                                                                    | 100% | 100% | 50%  | 67%  | 100% | 83%  | 100% | 100% | 100% | 100% | 80%  | 100% | 100% | 100% |
| WMO-6   |                                                                    | 100% | 100% | 67%  | 53%  |      | 100% | 75%  | 100% | 100% | 40%  | 80%  | 100% | 80%  | 100% |
| WMO-7   |                                                                    | 100% | 100% | 61%  | 50%  |      |      |      |      |      |      |      |      |      |      |
| WMO-8   |                                                                    | 69%  | 67%  | 33%  | 61%  |      |      |      |      |      |      |      |      | 67%  | 75%  |
| WMO-9   |                                                                    | 100% | 100% | 67%  | 89%  | 75%  |      |      |      |      |      |      |      |      | 100% |
| WMO-10  |                                                                    |      |      |      | 0%   |      | 100% | 100% | 100% | 100% | 80%  | 80%  | 100% | 75%  | 60%  |
| WMO-12  |                                                                    | 100% | 50%  | 88%  | 75%  |      |      |      |      |      | 80%  | 75%  | 100% | 100% | 100% |

| Site ID | Percent of Samples Exceeding NOAA Pigment Guidance of 5 μg/L |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|---------|--------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|         | 2000                                                         | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| CM-13   | 70%                                                          | 63%  | 71%  | 17%  | 86%  | 67%  | 42%  | 60%  | 10%  | 70%  | 10%  | 10%  | 38%  | 0%   | 0%   |
| CM-14   | 90%                                                          | 71%  | 71%  | 57%  | 71%  | 50%  |      |      |      |      |      |      |      |      |      |
| PBA-1   | 55%                                                          | 6%   | 29%  | 17%  | 17%  | 7%   | 0%   |      |      |      |      |      |      | 0%   | 0%   |
| PBA-2   | 70%                                                          | 25%  | 57%  | 0%   | 33%  |      |      |      |      |      |      |      |      |      |      |
| PBA-3   | 70%                                                          | 87%  | 93%  | 100% | 100% | 93%  | 75%  | 100% | 60%  | 75%  | 44%  | 70%  | 75%  | 50%  | 0%   |
| PBA-4   | 65%                                                          | 69%  | 93%  | 42%  | 57%  | 50%  | 60%  | 60%  | 0%   | 70%  | 0%   | 10%  | 25%  | 0%   | 10%  |
| PBA-5   | 90%                                                          | 88%  | 100% | 83%  | 100% | 71%  | 60%  | 50%  | 100% | 100% | 40%  | 100% | 60%  | 80%  | 40%  |
| PBA-5A  |                                                              |      | 100% | 71%  | 86%  | 86%  | 83%  | 80%  | 100% | 100% | 80%  | 80%  | 100% | 100% | 100% |
| PBA-6   | 80%                                                          | 70%  | 100% | 75%  | 92%  | 100% |      |      |      |      | 50%  | 100% | 25%  | 50%  | 20%  |
| PBA-7   | 58%                                                          | 36%  | 86%  | 31%  | 50%  | 75%  |      |      |      |      |      |      |      |      |      |
| PBA-8   | 60%                                                          | 67%  | 71%  | 25%  | 64%  | 64%  | 42%  | 25%  | 0%   | 30%  | 10%  | 0%   | 0%   | 13%  | 0%   |
| PBA-9   | 83%                                                          | 100% | 100% | 93%  | 93%  | 93%  | 100% | 100% | 90%  | 80%  | 80%  | 80%  | 90%  | 90%  | 60%  |
| PBA-10  | 58%                                                          | 75%  | 79%  | 64%  | 79%  | 64%  | 75%  | 75%  | 50%  | 60%  | 20%  | 70%  | 80%  | 70%  | 40%  |
| PBA-11  | 58%                                                          | 64%  | 71%  | 75%  | 67%  | 86%  | 83%  | 50%  | 25%  | 30%  | 60%  | 60%  | 60%  | 50%  | 40%  |
| PBA-12  | 25%                                                          | 42%  | 50%  | 21%  | 36%  | 29%  | 25%  | 0%   | 0%   | 20%  | 0%   | 20%  | 0%   | 0%   | 10%  |
| PBA-13  | 50%                                                          | 25%  | 57%  | 33%  | 40%  | 57%  | 33%  | 40%  | 0%   | 40%  | 0%   | 20%  | 10%  | 0%   | 0%   |
| PBA-14  | 67%                                                          | 100% | 100% | 100% | 100% | 100% | 100% |      |      |      | 60%  | 100% | 100% | 80%  | 30%  |
| PBA-15  | 75%                                                          | 83%  | 75%  | 62%  | 100% | 93%  | 100% | 70%  | 60%  | 80%  | 60%  | 80%  | 60%  | 20%  | 10%  |
| PBA-16  | 58%                                                          | 67%  | 71%  | 62%  | 86%  | 86%  | 100% |      |      |      | 10%  | 90%  | 80%  | 50%  | 30%  |
| PBA-17A |                                                              |      |      |      |      |      |      |      |      |      | 67%  | 75%  | 33%  | 0%   | 0%   |
| PBA-18  |                                                              |      | 100% | 20%  | 60%  | 21%  |      |      |      |      |      |      |      |      |      |
| PBA-19  |                                                              |      | 40%  | 20%  | 25%  | 30%  |      |      |      |      |      |      |      | 0%   | 0%   |
| PBA-20  |                                                              |      | 100% | 17%  | 64%  | 71%  |      |      |      |      |      |      |      | 0%   | 10%  |
| PBA-21  |                                                              |      | 40%  | 0%   | 17%  | 21%  |      |      |      |      |      |      |      | 0%   | 0%   |
| WMO-2   |                                                              | 67%  | 80%  | 60%  | 67%  |      |      |      |      |      |      |      |      |      |      |
| WMO-3   |                                                              | 33%  | 38%  | 25%  | 38%  |      | 33%  | 0%   | 20%  | 0%   | 0%   | 20%  | 20%  | 0%   | 0%   |
| WMO-4   |                                                              | 33%  | 33%  | 17%  | 50%  |      |      |      |      |      |      |      |      |      |      |
| WMO-5   |                                                              | 0%   | 50%  | 17%  | 50%  | 83%  | 83%  | 80%  | 80%  | 40%  | 40%  | 60%  | 80%  | 0%   | 0%   |
| WMO-6   |                                                              | 50%  | 67%  | 50%  | 100% |      | 83%  | 100% | 40%  | 40%  | 60%  | 100% | 80%  | 20%  | 20%  |
| WMO-7   |                                                              | 67%  | 33%  | 50%  | 67%  |      |      |      |      |      |      |      |      |      |      |
| WMO-8   |                                                              | 67%  | 50%  | 50%  | 83%  |      |      |      |      |      |      |      |      | 0%   | 0%   |
| WMO-9   |                                                              | 67%  | 50%  | 83%  | 100% | 83%  |      |      |      |      |      |      |      |      | 0%   |
| WMO-10  |                                                              | 83%  | 55%  | 67%  | 100% |      | 100% | 88%  | 80%  | 30%  | 10%  | 80%  | 80%  | 20%  | 0%   |
| WMO-12  |                                                              | 50%  | 67%  | 17%  | 33%  |      |      |      |      |      | 0%   | 50%  | 40%  | 40%  | 20%  |
## **Appendix D. Station-Specific Trend Analysis Results**

Table 12 Model coefficients and p-values for each of the statistically significant multiple linear regression models. Coefficients with statistically significant p-values (<0.05) are marked with an asterisk (\*). Note that while some models included additional predictors (depth, water temperature, salinity, and recent rainfall) this table only displays coefficients for predictors related to changes over time.

| Station | Parameter        | Date        | Date    | Break       | Break   | Date:Break  | Date:Break |  |
|---------|------------------|-------------|---------|-------------|---------|-------------|------------|--|
| Ch4 12  | DIN              | Coefficient | p-value | Coefficient | p-value | Coefficient | p-value    |  |
| CIVI-13 |                  | 0.047*      | 7E-20   |             |         |             |            |  |
|         | Diamonto         | 0.014       | 45-11   |             |         |             |            |  |
| CIVI-15 |                  | -0.029      | 4E-10   | 1 /25*      | 55.05   | 0.159*      | 0.000      |  |
| CN4 12  | DO<br>PO4        | -0.039      | 25.06   | -1.455      | 5E-05   | 0.156       | 0.009      |  |
| DBA_10  | PO4              | 0.010       | 2E-00   |             |         |             |            |  |
| PBA-10  | BioN             | 0.013       | 1E-03   |             |         |             |            |  |
| PBA-10  |                  | 0.007       | 0E-03   |             |         |             |            |  |
| PBA-10  | Pigments         | 0.000       | 52 05   | -0 093*     | 0.005   |             |            |  |
| PBA-10  |                  | 0.006       | 0 903   | -1 486*     | 5E-05   | 0 113       | 0.083      |  |
| PBA-10  | PO4              | 0.000       | 0.505   | -0.094*     | 1F-04   | 0.115       | 0.005      |  |
| PBA-10  | Salinity         | 0.069       | 0.298   | 1.059*      | 0.033   | -0.130      | 0.152      |  |
| PBA-11  | BioN             | 0.000       | 0.200   | -0.122*     | 0.001   | 0.100       | 01101      |  |
| PBA-11  | TN               |             |         | -0.135*     | 5E-06   |             |            |  |
| PBA-11  | Pigments         |             |         | -0.150*     | 0.002   |             |            |  |
| PBA-11  | Salinity         | 0.066*      | 1E-03   |             |         |             |            |  |
| PBA-12  | BioN             | -0.008*     | 0.010   |             |         |             |            |  |
| PBA-12  | TN               | -0.018*     | 3E-11   |             |         |             |            |  |
| PBA-12  | Pigments         |             |         | -0.248*     | 5E-12   |             |            |  |
| PBA-12  | DO               | 0.040*      | 8E-04   |             |         |             |            |  |
| PBA-12  | PO4              |             |         | -0.076*     | 0.007   |             |            |  |
| PBA-12  | Salinity         |             |         | 0.641*      | 0.001   |             |            |  |
| PBA-13  | DIN              | 0.017*      | 3E-04   |             |         |             |            |  |
| PBA-13  | Pigments         | -0.029*     | 9E-12   |             |         |             |            |  |
| PBA-13  | Salinity         | 0.093       | 0.340   | 1.469*      | 0.042   | -0.166      | 0.209      |  |
| PBA-14  | Pigments         |             |         | -0.169*     | 9E-05   |             |            |  |
| PBA-14  | DO               | 0.055       | 0.376   | 3.005*      | 0.002   | -0.350*     | 0.004      |  |
| PBA-15  | BioN             |             |         | -0.067*     | 0.003   |             |            |  |
| PBA-15  | TN               | -0.005*     | 0.040   |             |         |             |            |  |
| PBA-15  | Pigments         | -0.019*     | 2E-05   |             |         |             |            |  |
| PBA-15  | PO4              | 0.007*      | 0.019   |             |         |             |            |  |
| PBA-15  | Salinity         | -0.113      | 0.201   | 1.406*      | 0.029   | 0.065       | 0.578      |  |
| PBA-16  | BioN             | -0.010*     | 0.012   |             |         |             |            |  |
| PBA-16  | Pigments         |             |         | -0.161*     | 0.002   |             |            |  |
| PBA-3   | DIN              |             |         | 0.204*      | 0.001   |             |            |  |
| PBA-3   | Pigments         | -0.020*     | 3E-08   |             |         |             |            |  |
| PBA-3   | DO               | 0.012       | 0.853   | -2.833*     | 5E-09   | 0.355*      | 5E-05      |  |
| PBA-3   | Salinity         |             |         | 0.552*      | 0.029   |             |            |  |
| PBA-4   | BION             | -0.015*     | 2E-07   |             |         |             |            |  |
| PBA-4   | IN<br>Discussion | -0.010*     | 3E-04   |             |         |             |            |  |
| PBA-4   | Pigments         | -0.024*     | 3E-13   | 4 000*      | 45.04   | 0.000*      | 0.001      |  |
| PBA-4   |                  | -0.061      | 0.352   | -1.983*     | 1E-04   | 0.300*      | 0.001      |  |
| PBA-4   | PO4              | 0.008*      | 0.017   |             |         |             |            |  |
| PBA-4   | Salinity         | 0.072*      | 2E-03   |             |         |             |            |  |
| PBA-5   | DIN              | 0.024*      | 0.043   |             |         |             |            |  |

| PBA-5                                                                                                           | DO       | -0.293* | 3E-03 | -0.105  | 0.898 | 0.264  | 0.056    |
|-----------------------------------------------------------------------------------------------------------------|----------|---------|-------|---------|-------|--------|----------|
| PBA-5                                                                                                           | Salinity | -0.751* | 5E-03 | -4.438* | 0.043 | 1.516* | 9E-05    |
| PBA-5A                                                                                                          | DIN      | -0.026* | 0.039 |         |       |        |          |
| PBA-5A                                                                                                          | Pigments |         |       | 0.226*  | 0.005 |        |          |
| PBA-5A                                                                                                          | Salinity | -2.008* | 3E-03 | -6.320* | 0.038 | 3.161* | 6E-05    |
| PBA-6                                                                                                           | TN       | -0.010* | 7E-05 |         |       |        |          |
| PBA-6                                                                                                           | Pigments | -0.020* | 9E-08 |         |       |        |          |
| PBA-6                                                                                                           | DO       |         |       | 1.141*  | 1E-07 |        |          |
| PBA-6                                                                                                           | PO4      | -0.015* | 3E-04 |         |       |        |          |
| PBA-6                                                                                                           | Salinity | 0.061*  | 9E-03 |         |       |        |          |
| PBA-8                                                                                                           | DIN      | 0.036*  | 5E-08 |         |       |        |          |
| PBA-8                                                                                                           | TN       | 0.008*  | 5E-03 |         |       |        |          |
| PBA-8                                                                                                           | Pigments |         |       | -0.236* | 6E-15 |        |          |
| PBA-8                                                                                                           | DO       | 0.209*  | 2E-03 | -0.781  | 0.116 | -0.149 | 0.104    |
| PBA-8                                                                                                           | PO4      |         |       | -0.150* | 1E-07 |        |          |
| PBA-9                                                                                                           | DIN      | 0.017*  | 5E-03 |         |       |        |          |
| PBA-9                                                                                                           | BioN     |         |       | -0.039* | 0.029 |        |          |
| PBA-9                                                                                                           | TN       |         |       | -0.092* | 9E-08 |        |          |
| PBA-9                                                                                                           | Pigments | -0.015* | 3E-05 |         |       |        |          |
| PBA-9                                                                                                           | DO       |         |       | -0.721* | 1E-05 |        |          |
| WMO-10                                                                                                          | BioN     |         |       | -0.059* | 0.002 |        |          |
| WMO-10                                                                                                          | TN       |         |       | -0.193* | 7E-17 |        |          |
| WMO-10                                                                                                          | Pigments | -0.034* | 3E-05 |         |       |        |          |
| WMO-10                                                                                                          | DO       | 0.167*  | 0.043 |         |       |        |          |
| WMO-10                                                                                                          | Salinity | -0.492* | 6E-03 | 0.232   | 0.788 | 0.515* | 0.012    |
| WMO-12                                                                                                          | DIN      | 0.029*  | 9E-04 |         |       |        |          |
| WMO-12                                                                                                          | BioN     | 0.012*  | 3E-03 |         |       |        |          |
| WMO-12                                                                                                          | TN       |         |       | 0.100*  | 0.006 |        |          |
| WMO-12                                                                                                          | DO       | -0.093* | 3E-04 |         |       |        |          |
| WMO-12                                                                                                          | Salinity |         |       | 0.575*  | 0.043 |        |          |
| WMO-3                                                                                                           | BioN     |         |       | -0.086* | 0.001 |        |          |
| WMO-3                                                                                                           | TN       |         |       | -0.080* | 0.005 |        |          |
| WMO-3                                                                                                           | Pigments | -0.023* | 5E-04 |         |       |        |          |
| WMO-5                                                                                                           | Pigments | -0.019* | 0.034 |         |       |        |          |
| WMO-5                                                                                                           | DO       | -0.183  | 0.059 | -3.008* | 5E-07 | 0.337* | 0.005    |
| WMO-5                                                                                                           | PO4      |         |       | 0.074*  | 0.023 |        |          |
| WMO-6                                                                                                           | BioN     | -0.011* | 9E-04 |         |       |        |          |
| WMO-6                                                                                                           | TN       | -0.013* | 2E-04 |         |       |        |          |
| WMO-6                                                                                                           | Pigments | -0.025* | 0.022 |         |       |        |          |
| Design of the second | A        | -       |       |         |       |        | <i>i</i> |

## **Appendix E. Bay-Wide Trend Analysis Results**

Table 13. AIC values and coefficient estimates for each of the candidate mixed effects models. The best models (lowest AIC) are highlighted in yellow. Coefficient p-values are displayed for the best models in parentheses. Coefficients with statistically significant p-values (<0.05) are marked with an asterisk (\*).

|         |         | Coefficient Estimates |          |            |          |                   |              |              |          |                     |  |
|---------|---------|-----------------------|----------|------------|----------|-------------------|--------------|--------------|----------|---------------------|--|
| Model   | AIC     | Date                  | Break    | Date:Break | DepthMid | DepthSurface      | Salinity     | Temp         | LogRain7 | Intercept           |  |
| DIN1    | 2168.6  | 0.0091                |          |            | 0.0316   | -0.0614           |              |              |          | 1.7484              |  |
| DIN1C   | 2009.1  | 0.0124                |          |            | 0.0297   | -0.0606           | -0.0032      | 0.0009       | 0.0801   | 1.8608              |  |
| DIN2    | 2197.0  |                       | 0.0819   |            | 0.0470   | -0.0609           |              |              |          | 1.7384              |  |
| DIN2C   | 2049.7  |                       | 0.1038   |            | 0.0510   | -0.0598           | -0.0030      | 0.0010       | 0.0747   | 1.8391              |  |
| DIN3    | 2155.6  | 0.0204                | 0.0912   | -0.0229    | 0.0303   | -0.0616           |              |              |          | 1.7517              |  |
| DIN3C   | 2000.5  | 0.0233*               | 0.0634   | -0.0196*   | 0.0289   | -0.060*           | -0.0014      | 0.0001       | 0.0793*  | 1.8298*             |  |
|         |         | (7e-6)                | (0.07)   | (0.003)    | (0.54)   | (3e-6)            | (0.67)       | (0.98)       | (<2e-16) | (<2e-16)            |  |
| BioN1   | -2750.6 | -0.0040               |          |            | -0.0617  | -0.0536           |              |              |          | 2.3390              |  |
| BioN1C  | -2663.4 | -0.0032               |          |            | -0.0717  | -0.0579           | -0.0063      | 0.0035       | 0.0138   | 2.4580              |  |
| BioN2   | -2757.1 |                       | -0.0325  |            | -0.0608  | -0.0537           |              |              |          | 2.3407              |  |
| BioN2C  | -2669.9 | 0.00==*               | -0.0248  | 0.0000*    | -0.0691  | -0.0577           | -0.0060      | 0.0033       | 0.0145   | 2.4549              |  |
| BION3   | -2790.5 | -0.00/5*              | -0.0599* | 0.0090*    | -0.04/9* | $-0.0535^{*}$     |              |              |          | 2.3381*             |  |
| Die NOC | 2701.1  | 0.0001                | 0.004)   | 0.0122     | (0.03)   | (<20-10)          | 0.0004       | 0.0020       | 0.0152   | 2 45 75             |  |
| DIUNSC  | -2701.1 | -0.0059               | -0.0684  | 0.0123     | -0.0568  | -0.0579           | -0.0064      | 0.0036       | 0.0152   | 2.4575              |  |
|         | -3280.0 | -0.0058               |          |            | 0.0205   | -0.0047           | 0.0004       |              | 0.0071   | 2.8118              |  |
|         | -3221.7 | -0.0055               | 0.0200   |            | 0.0274   | -0.0072           | 0.0004       | 0.0058       | 0.0071   | 2.0015              |  |
| TN2     | -5205.0 |                       | -0.0390  |            | 0.0246   | -0.0040           | 0.0005       | 0.0060       | 0.0095   | 2.0125              |  |
|         | -31/0.2 | 0.0070*               | -0.0400  | 0.0052     | 0.0236   | -0.0073           | 0.0005       | 0.0060       | 0.0085   | 2.0703              |  |
| 1103    | -3340.6 | -0.0078**<br>(0.02)   | -0.0362  | (0.21)     | 0.0301   | -0.0044<br>(0.41) |              |              |          | 2.8143*<br>(<2e-16) |  |
| TN3C    | -3247.3 | -0.0087               | -0.0429  | 0.0071     | 0.0296   | -0.0071           | 0.0009       | 0.0060       | 0.0081   | 2.6657              |  |
| Pig1    | 79.1    | -0.0201               | 010120   | 0.007.1    | -0.0145  | -0.0244           | 0.0005       | 0.0000       | 0.0001   | 0.7801              |  |
| Pig1C   | 2.9     | -0.0197               |          |            | -0.0463  | -0.0404           | -0.0101      | 0.0156       | 0.0025   | 0.7580              |  |
| Pig2    | 125.4   |                       | -0.1753  |            | -0.0196  | -0.0246           |              |              |          | 0.7842              |  |
| Pig2C   | 53.5    |                       | -0.1689  |            | -0.0511  | -0.0402           | -0.0101      | 0.0147       | 0.0091   | 0.7837              |  |
| Pig3    | -73.7   | 0.0062                | 0.1675   | -0.0495    | -0.0147  | -0.0252           |              |              |          | 0.7840              |  |
| Pig3C   | -119.5  | 0.0035                | 0.1570*  | -0.0441*   | -0.0497  | -0.0391*          | -0.0088*     | 0.0134*      | -0.0016  | 0.7671*             |  |
|         |         | (0.38)                | (0.001)  | (2e-8)     | (0.10)   | (2e-5)            | (8e-5)       | (<2e-16)     | (0.80)   | (<2e-16)            |  |
| DO1     | 11549.6 | -0.0219               |          |            | 0.2621   | 0.6102            |              |              |          | 5.5669              |  |
| DO1C    | 10275.9 | -0.0143               |          |            | 0.3273   | 0.7207            | -0.0380      | -0.1937      | -0.1294  | 10.6573             |  |
| DO2     | 11520.7 |                       | -0.2806  |            | 0.3043   | 0.6117            |              |              |          | 5.5891              |  |
| DO2C    | 10250.8 |                       | -0.2364  |            | 0.3643   | 0.7230            | -0.0349      | -0.1921      | -0.1397  | 10.5534             |  |
| DO3     | 11505.8 | -0.0350               | -0.8501  | 0.1032     | 0.3460   | 0.6118            |              |              |          | 5.5761              |  |
| DO3C    | 10237.8 | 0.0110                | -0.7446* | 0.0501*    | 0.3989*  | 0.7223*           | -0.0369*     | -            | -0.1199* | 10.6260*            |  |
|         |         | (0.50)                | (a. a)   | (0.046)    | (0.00)   |                   | (0,000)      | 0.1927*      | (0.004)  |                     |  |
|         |         | (0.53)                | (2e-4)   | (0.046)    | (0.03)   | (<2e-16)          | (0.003)      | (<2e-16)     | (0.001)  | (<2e-16)            |  |
| PO1     | -818.8  | -0.0005               |          |            | -0.0140  | -0.0383           |              |              |          | 1.6498              |  |
| PO1C    | -1248.7 | -0.0020               | 0.000    |            | -0.0269  | -0.0492           | 0.0123       | 0.0295       | 0.0252   | 0.6958              |  |
| PO2     | -822.5  |                       | -0.0221  |            | -0.0163  | -0.0384           |              |              |          | 1.6561              |  |
| PO2C    | -1257.4 | 0.040                 | -0.0332  | 0.0075     | -0.0255  | -0.0488           | 0.0131       | 0.0292       | 0.0237   | 0.6803              |  |
| PO3     | -861.2  | 0.0124                | -0.0724  | -0.0070    | -0.0146  | -0.0385           |              | 0.0000       |          | 1.6590              |  |
| PO3C    | -1281.4 | 0.0076*               | -0.0906* | -0.0012    | -0.0237  | -0.0486*          | $0.0134^{*}$ | $0.0289^{*}$ | 0.0264*  | $0.6834^{*}$        |  |
| Colt    | 11200 4 | <u>(86-3)</u>         | (3e-4)   | (0.75)     | (0.42)   | (2e-10)           | (36-12)      | (<26-10)     | (4e-7)   | 20.0104             |  |
| Salt    | 11389.4 | 0.0680                |          |            | -0.4367  | -0.3165           |              | 0.0455       | 0 2742   | 29.8184             |  |
| Salic   | 10935.8 | 0.0539                | 0.0700   |            | -0.3807  | -0.3189           |              | 0.0155       | -0.3/12  | 29.2692             |  |
| Saiz    | 11369.6 |                       | 0.6723   |            | -0.4229  | -0.3160           |              |              |          | 29.7650             |  |

|       |         | Coefficient Estimates |         |            |          |              |          |         |          |           |  |
|-------|---------|-----------------------|---------|------------|----------|--------------|----------|---------|----------|-----------|--|
| Model | AIC     | Date                  | Break   | Date:Break | DepthMid | DepthSurface | Salinity | Temp    | LogRain7 | Intercept |  |
|       |         |                       |         |            |          |              |          |         |          |           |  |
| Sal2C | 10909.0 |                       | 0.5763* |            | -0.3835  | -0.3193*     |          | 0.0174* | -0.3746* | 29.1774*  |  |
|       |         |                       | (3e-5)  |            | (0.18)   | (6e-6)       |          | (0.065) | (2e-16)  | (<2e-16)  |  |
| Sal3  | 11376.3 | 0.0077                | 0.5096  | 0.0127     | -0.4274  | -0.3161      |          |         |          | 29.7664   |  |
| Sal3C | 10916.2 | -0.0164               | 0.5757  | 0.0166     | -0.3761  | -0.3196      |          | 0.0185  | -0.3759  | 29.1487   |  |

## **Appendix F. Station-Specific Trend Plots**

This Appendix contains plots of station-specific trend analysis results. Each plot displays the trendline for a given station-parameter pair as a solid line. Plots also includes the following elements:

- 90% confidence interval for the trendline (red dashed lines).
- The p-value for the trendline. For station-parameter pairs with different pre-break and postbreak trends, two p-values are listed. The first (p1) is the p-value for the pre-break trend slope. The second (p2) is the p-value for the post-break trend slope. Trends that are statistically significant at p<0.05 are denoted by an asterisk next to the p-value.
- Water quality target concentrations for dissolved oxygen, total phytopigment, and bioactive nitrogen plots (blue dotted lines). Bioactive nitrogen thresholds were established by the Massachusetts Estuaries Program to support the development of the 2007 Pleasant Bay TMDL and vary by station (Howes et al. 2006). The dissolved oxygen target of 6 mg/L is the Massachusetts water quality standard for coastal waters. The total phytopigment target of 5 µg/L is a guidance value established by the National Oceanic and Atmospheric Administration (NOAA).







































